1700926441
2.质子和中子占据原子的中心,即构成原子核。
1700926442
1700926443
3.电子绕原子核做轨道运动。
1700926444
1700926445
4.大质量原子核往往是不稳定的,会发生分裂(核裂变)。
1700926446
1700926447
5.小的核较稳定,但可以发生合并(核聚变)。
1700926448
1700926449
6.裂变/聚变后的核的质量要比最初的核的质量小。
1700926450
1700926451
7.由E=mc2知,这种质量的减少导致能量的释放。
1700926452
1700926453
8.中等质量的核是最稳定的,很少发生核反应。
1700926454
1700926455
9.即使是非常轻或非常重的原子核,要进行聚变或裂变反应,也需要高能量和高压强条件。
1700926456
1700926457
将核物理学的这些法则与天文学联系起来的首批科学家里,有一位叫弗里茨·豪特曼斯的有勇气且有原则的物理学家,向来以魅力和机智著称。他可能是唯一的一位其笑话被编纂成40页的小册子出版的物理学家。豪特曼斯的母亲有一半的犹太血统,他有时用这样的话来回敬反犹言论:“当你的祖先还住在树上时,我的祖先已经会伪造支票了。”
1700926458
1700926459
豪特曼斯于1903年出生在佐波特(Zoppot),一个靠近当时德国丹泽(现今波兰的格但斯克)的波罗的海港口的地方。后来他的父母搬到维也纳,豪特曼斯在那里度过了童年。1920年,他从那里回到德国,在格丁根学习物理学,并在此获得了一个研究员的职位。通过与英国科学家罗伯特·德埃斯库特·阿特金森一起工作,他开始迷上了这样一个概念:核物理可以用来解释太阳和其他恒星是如何燃烧的。
1700926460
1700926461
众所周知,太阳主要是由氢和部分的氦组成的,因此人们很自然地假定,太阳产生的能量是氢聚变成氦的核反应的结果。当时还没有人在地球上观察到核聚变,因此对这种机制的细节并不清楚。但业已知晓,如果氢可以在某种程度上转化成氦,将有0.7%的质量损失:1千克的氢以某种方式被聚变成0.993千克氦时,将有0.007千克的质量损失。同样,看上去这个质量损失很小,但爱因斯坦的质能关系式E=mc2告诉我们,这一看似微小的质量损失甚至能够产生数量巨大的能量:
1700926462
1700926463
能量=mc2=质量×(光速)2=0.007×(3×108)2=6.3×1014焦耳所以,从理论上讲,1千克的氢可以聚变成0.993千克的氦并产生6.3×1014焦耳的能量,它等于燃烧100000吨煤所产生的能量。
1700926464
1700926465
困扰豪特曼斯的主要问题是,太阳上的条件是否足以引发聚变。前面我们提到,聚变反应不可能自发发生,需要高温和高压。这是因为它们需要输入初始能量来触发核反应。在两个氢核聚变的情形下,这种初始能量对于克服初始的静电斥力是必要的。氢核是带正电荷的质子,所以它会排斥另一个带正电荷的氢核,因为同种电荷相斥。但是,如果质子能得以足够接近对方,那么吸引性的所谓强作用核力就将起作用,它将压倒静电斥力,并使两个氢核安全地绑定在一起形成氦核。
1700926466
1700926467
豪特曼斯计算出这个临界距离为10-15米,即1毫米的一万亿分之一。如果两个相互接近的氢核能够接近对方到这个距离,那么聚变就将发生。豪特曼斯和阿特金森都深信,太阳内部深处的压力和温度都大到足以迫使氢核接近到这个10-15米的临界距离的范围内,这将导致聚变,而释放出的能量则用来维持温度,并促使进一步聚变。1929年,他们在德文期刊《物理学杂志》上发表了他们关于恒星上的聚变的这一想法。
1700926468
1700926469
豪特曼斯确信,他和阿特金森正行进在正确解释为什么星星会发光的道路上,他对他的这项研究感到非常自豪,以至于不禁向他约会的女孩夏洛特·里芬斯塔尔夸耀他的这项工作。后来他回忆起他完成了关于恒星聚变的研究论文后那个晚上所发生的交谈内容:
1700926470
1700926471
那天晚上,我们完成论文之后,我便去与一个漂亮的姑娘约会散步。天渐渐地黑了下来,星星出来了,一个接一个,个个都闪耀着光辉。“它们是不是闪得很漂亮?”我的同伴叫道。但我只是挺了挺胸,自豪地说:“从昨天开始我已经知道它们为什么会闪光。”
1700926472
1700926473
夏洛特·里芬斯塔尔显然对此印象深刻。后来她嫁给了他。然而,豪特曼斯只发展了部分恒星聚变理论。即使在太阳上2个氢核可以聚变成1个氦核,它也只能是氦的一种很轻且不稳定的同位素——稳定的氦核还需要向核内添加2个中子。豪特曼斯相信存在中子,它也确实在太阳中存在,但在1929年他和阿特金森发表他们的论文时,它还没有被发现。因此豪特曼斯对中子的各种属性大体上是无知的,他无法完成他的计算。
1700926474
1700926475
当1932年中子最终被查德威克发现后,豪特曼斯正处在填补他的理论细节的理想状态,但政治干扰很快又起。他曾是一名共产党员,因此担心会成为纳粹迫害的受害者。1933年,他逃离德国到了英国,但在那里,不论是文化还是食物都不对他的胃口。他说他无法忍受永远存在的涮羊肉的气味,并称英格兰就是个“腌土豆的邦域”。1934年底,他离开英国前往苏联。据他的传记作者约瑟夫·赫里普罗维奇(Iosif KhripIovich)记载,他的移民主要是受到“理想主义和英式菜肴”的驱使。
1700926476
1700926477
在豪特曼斯于20世纪30年代末被拘留期间,其他物理学家拾起他的恒星聚变的思路,并计算了太阳上所发生过程的具体细节。其中对完成豪特曼斯研究贡献最大的当属汉斯·贝特。1933年,贝特因他母亲是犹太人而被他所在的图宾根大学解雇。他先是在英国,后来又去了美国寻找避难所,并最终成为洛斯·阿拉莫斯国家实验室(核弹项目研发基地)理论部门的负责人。
1700926478
1700926479
贝特为在太阳的温度和压力环境下可行的氢变氦过程确立了两条核反应路径。一条路径是,标准氢(1个质子)与氘(氢的较稀有、较重的同位素,由1个质子和1个中子组成)反应。这个反应形成的是氦的相对稳定的同位素(含2个质子和1个中子)。接着,两个这样的轻氦核会进一步聚变,形成一个标准的、稳定的氦核,同时释放出2个氢核作为副产品。这一过程如图74所示。
1700926480
1700926481
1700926482
1700926483
1700926484
图74 本图显示的是太阳上氢变氦的一种方式。黑色球体表示质子,白色球体表示中子。在反应的第一阶段,标准氢和氘聚变成氦核。氦通常有2个质子和2个中子,但是这种氦同位素有2个质子但只有1个中子。在第二阶段,2个轻氦核再次聚变,形成稳定的氦同位素,同时释放出2个氢核(质子)。这些氢核可以再次形成氦核。理论上说,2个氘核(由1个质子和1个中子组成)可以直接聚变形成稳定的氦核(2个质子和2个中子)。但氘非常稀少,所以前一种较繁复的路径反倒更富有成效。
1700926485
1700926486
贝特建议的氢变氦的另一条路径要用到碳核作为捕集氢核的手段。如果太阳含有少量的碳,那么每个碳原子核一次可以捕捉和吞噬一个氢核,变身为更重的核。最终,转化后的碳核会变得不稳定,导致它吐出一个氦核并转回到其本身稳定的碳核,接着这一过程又重新开始。换句话说,碳核在这里充当加工厂,使用氢核为原料来大量生产出氦核。
1700926487
1700926488
这两条核反应路径最初都是推测性的,但是其他物理学家检查了方程并确认,反应是可行的。与此同时,天文学家们也更加确信,太阳的内部环境强到足以引发核反应。到20世纪40年代,人们已经很清楚,贝特提出的这两种核反应在太阳上都会发生,并提供维持太阳存在所需的能量。天体物理学家已能够设想太阳究竟是如何每秒钟将5.84亿吨的氢转换为5.8亿吨的氦的,并将由此引起的质量亏损转换成太阳的能源的。尽管这个质量消耗率巨大,但太阳却能够以这种速率持续产能数十亿年,因为它目前仍有大约2×1027吨的氢。
1700926489
1700926490
这是在原子物理学与宇宙学之间关系的一个里程碑。核物理学家已经证明,他们可以通过解释恒星如何发光来对天文学做出具体贡献。现在,大爆炸宇宙学家希望核物理学能帮助他们解决一个更大的问题:宇宙是如何演变成目前这个状态的?现在很清楚,恒星可以将如氢这样的简单原子变成如氦这样的稍重的原子,所以核物理也许可以说明大爆炸是如何产生我们今天看到的各种原子的丰度的。
[
上一页 ]
[ :1.700926441e+09 ]
[
下一页 ]