1700931420
如果霍金是正确的,那么自然定律将会增加某种随机性,物理学的整个基础崩溃了。我们以后再回到这个问题。
1700931421
1700931422
不确定原理
1700931423
1700931424
拉普拉斯认为,只要他对现在了解得足够多,他就可以预测未来。不幸的是,对于世界上所有的算命者来说,同时知道一个物体的位置和速度是不可能的。我所说的不可能,并不是非常困难或者是现今的技术无法胜任此任务。遵循物理定律的任何技术永远都无法胜任此事,不可能性的程度并不亚于提高技术来进行超光速旅行。为了同时测定粒子的位置和速度而设计的任何实验都会出现违背海森伯不确定原理的困难。
1700931425
1700931426
不确定原理是重要的分水岭,它将物理学分为量子之前的经典时代和奇异的后现代量子时代。经典物理包括量子力学之前的一切,包括牛顿的运动理论、麦克斯韦的光理论以及爱因斯坦的相对论理论。经典物理是决定论性的,量子物理则充满了不确定性。
1700931427
1700931428
不确定原理是一个奇怪的、大胆创新的断言,是在埃尔温·薛定谔(Erwin Schrodinger)发现量子力学的数学基础之后不久,由26岁的沃纳·海森伯于1927年作出的。甚至在那个创新思想如雨后春笋般的时代,它依然以它的异常性而突出。海森伯没有提出精确测量物体位置的极限。我们可以无限精度地测量粒子在空间的坐标。他同样也没有提出精确测量物体速度的极限。他所主张的是,任何实验,无论其多么复杂精巧,都永远无法同时测量物体的位置和速度。仿佛爱因斯坦的上帝,规定了我们永远无法知道得足够多,并以此来预测未来。
1700931429
1700931430
1700931431
黑洞战争 不确定原理充满了模糊性,但它自身恰恰相反,没有任何模糊性。不确定性是一个精确的概念,它涉及概率测定、微积分和其他新奇的数学。但是,为了解释一个有名的表述,一幅图相当于1000个方程。我们先从概率分布开始。假如有非常多的粒子,比方说1万亿个粒子,我们研究它们在水平轴,也就是x轴上的位置。我们发现第一个粒子在x=1.325 7处,第二个粒子在x=0.913 4处,如此等等。关于所有粒子的位置,我们可以列出一个长的清单。不幸的是,需要像本书这样的书大约1000万册才行,在大多数情形下,我们并不对这个清单特别感兴趣。画一个统计图来表明x位置处粒子的多少将更有启发作用。该图的形状如下:
1700931432
1700931433
1700931434
1700931435
1700931436
该图赋予我们的第一个印象是大多数粒子聚在x=1处附近。对于某种目的,这可能就足够了。目测一下此图,我们可能会精确很多。大约有90%的粒子在x=0和x=2之间。如果我们为在哪里发现一个特定的粒子而打赌,那么最好的猜测是在x=1处,而不确定度可以通过数学方法测量曲线的宽度得到,大约是2个单位。[40]希腊字母(Δ)是表示不确定性的标准数学符号。在这个例子中,Δx代表粒子的x坐标的不确定度。
1700931437
1700931438
1700931439
1700931440
1700931441
我们来做另一个思想实验。我们所测量的不是粒子的位置,而是它们的速度。如果粒子向右运动,记它的速度为正,向左运动则为负。这一次,水平轴代表速度v。
1700931442
1700931443
1700931444
1700931445
1700931446
从图中,你可以看到大多数粒子在向左运动,因此你同时能很好地了解速度的不确定值Δv。
1700931447
1700931448
粗略地讲,不确定原理告诉我们:任何试图缩小位置的不确定性的举动,都会不可避免地增大速度的不确定性。例如,我们有可能有目的地选择x一个狭小范围,比如说,x=0.9到x=1.1之间,去掉剩余部分。对这些精挑细选的粒子而言,不确定度只有0.2,比原来的Δx小了10倍。我们可能希望通过这种方式来推翻不确定原理,但这样做是行不通的。
1700931449
1700931450
结果证明,对上述同样的这些粒子,我们测量它们的速度,发现速度比原来的样本要发散得多。你可能想知道为什么会这样,但我想这仅是众多无法理解的量子事实之一,没有经典的解释,是费曼所提及的量子现象之一:“因此理论物理已经放弃(解释)它了。”
1700931451
1700931452
虽然无法理解,但它是一个实验事实,无论我们做什么来减小Δx,都无法避免地导致Δv增加。同样的,任何减小Δv的方式都会导致Δx的增加。我们越想固定粒子的位置,它的速度越是不确定,反之亦然。
1700931453
1700931454
这是简略的说法,但海森伯将他的不确定原理,更为精确地定量化了。不确定原理认为Δv、Δx和粒子质量的乘积总是大于普朗克常数h。
1700931455
1700931456
mΔvΔx>h
1700931457
1700931458
我们来看它是怎样运作的。假设我们非常仔细地调节粒子,让Δx非常小。这使得Δv足够大,从而它们的乘积大于h。我们使Δx变得越小,Δv就必须越大。
1700931459
1700931460
为什么在日常生活中,我们无法注意到不确定原理呢?当你开车时,仔细观察速度计,你是否会体验到位置上的模糊性呢?或者当你查看地图想知道你在哪里时,速度计是否会疯狂地运转呢?当然不会,但这是什么缘故呢?不确定原理并不是有所偏爱,它适用于任何事物,包括你和你的小汽车,如同对电子一样。答案涉及出现在公式中的质量和微小的普朗克常数。对电子而言,极小的质量值相应于极小的h值,因此组合的Δv和Δx必须非常大。然而相对于普朗克常数来讲,小汽车的质量非常大。于是Δv和Δx都可能非常小而不违背不确定原理。你现在可以赞赏为什么自然界不为我们的大脑准备不确定性了,因为没有必要。在日常生活中,我们从未遇到足够轻的物体,以至于不确定原理起作用。
1700931461
1700931462
这就是海森伯的不确定原理:一个最终不可逾越的障碍,保证了任何人不能因懂得够多而能预测未来。我们会在第15章中重新回到不确定原理的讨论。
1700931463
1700931464
零点运动和量子晃动
1700931465
1700931466
仅1厘米见方的一只盒子,里面充满了非电抗性的氮原子,将它加热到非常高的温度。由于热量的存在,使得粒子飞来飞去,不断地相互碰撞,再撞到盒壁上弹回,频繁的碰撞产生了盒壁上的压强。
1700931467
1700931468
按照通常的标准,原子运动得很快:平均速度大约是每秒1500米。接下来冷却气体。由于热量被移除了,能量渐渐枯竭,原子的运动慢下来了。如果我们继续移走热量,气体最终会被冷却到尽可能低的温度——绝对零度,或者大约是-273.16°[41]。由于原子丢失了它们的能量而静止下来,盒壁上的压强消失了。
1700931469
[
上一页 ]
[ :1.70093142e+09 ]
[
下一页 ]