打字猴:1.70093147e+09
1700931470 至少在假想中,这是可以发生的。但是在推理中,人们忽略了不确定原理。
1700931471
1700931472 进一步考虑下述问题,我们如何知道目前情况下原子的位置呢?事实上,每个原子都被限制在盒内,而且盒子的尺寸只有1厘米。显然,位置的不确定度Δx小于1厘米。想象这一时刻,热量被移尽了,所有的原子都静止了。任何原子的速度为零,没有不确定度。换句话说,Δv为零,但这是不可能的。如果正确,那将意味着mΔvΔx同样为零,这显然小于普朗克常数。从另一个角度说,如果每个原子的速度为零,它们的位置将无限地不确定,但事实并不是这样,原子都在盒内。因此,甚至是在绝对零度的情况下,原子也不能完全地停止它们的运动;它们会继续从盒壁上弹开并施加压力。这是量子力学中无法预期的可能性之一。
1700931473
1700931474 当一个系统被抽走足够多的能量(温度为绝对零度情形),物理学家称它处于基态。基态中剩余的涨落运动,通常称为零点运动,不过物理学家布莱恩·格林(Brain Greene)为它杜撰了一个更具描述力的口语名称,他称之为“量子晃动”。
1700931475
1700931476 粒子的位置并不是唯一晃动的东西。依据量子力学,任何可以晃动的事物都在晃动。另一个例子是真空中的电场和磁场。振动的电场和磁场存在于我们周围,以光波的形式充满空间,甚至在黑暗的屋子里,电磁场以红外波、微波和各种电波的形式振动。但是在科学允许的范围内,如果我们继续使屋子变暗,移去所有的光子会怎么样呢?电场和磁场继续做量子晃动。“一无所有”的空间是剧烈地振动着、振荡着和晃动着的环境,永远无法安静下来。
1700931477
1700931478 任何人在了解量子力学之前,他们都知道“热晃动”,它使得任何事物涨落。例如,加热气体引起分子的随机运动的增加。甚至当真空被加热时,它充满了晃动的电场和磁场。这和量子力学没有一点儿关系,在19世纪就为人所熟知了。
1700931479
1700931480 量子晃动和热晃动在某些方面彼此相似,其他方面则不同。热晃动是非常显著的,分子、电场和磁场的热晃动,反馈到你的神经末梢,使你感觉到温暖。同时它们也可以是非常有害的。例如,电磁场热晃动的能量,可以被转移到原子中的电子,如果温度足够高,电子可以从原子中发射出来,与此形成的能量可以使你燃烧,甚至化为气体。相比之下,虽然量子晃动是令人难以置信地充满活力,但是它们不引起任何痛苦,它们不会反馈到你的神经末梢,也不会破坏原子。这是为什么呢?因为需要足够的能量才能使原子离子化(把电子击出)或者激起你的神经末梢的反应,但是从基态中转移出的能量太小,因此这一切都是不可能的。量子晃动是当系统有着最低能量时所剩余的东西。虽然它惊人地剧烈,但是它丝毫没有热涨落的破坏效应,因为它们的能量是一种“不可用能”。
1700931481
1700931482 黑魔术
1700931483
1700931484 对我而言,量子力学最奇异的魔幻之处是干涉。我们回到本章开头处所描写的双缝实验。它有三个要素:光源、有着两条狭缝的平坦障碍物和一个光落在上面能闪光的荧光屏。
1700931485
1700931486 我们开始做这个实验,挡住左边的狭缝,结果得到的是屏上毫无特点的光点。如果减弱光的强度,我们发现光点实际上是由单个光子产生的闪光的集合。闪光是无法预测的,但当有很多闪光时,多个光点构成了一个图案。
1700931487
1700931488
1700931489
1700931490
1700931491 如果我们打开左边的狭缝,挡住右边的狭缝,屏上的图案除了向左发生了微小的移动之外,几乎没有发生变化。
1700931492
1700931493 当我们同时打开两条狭缝时,令人吃惊的事情发生了。并不是仅将穿过左侧的光子和穿过右侧的光子加起来,而形成一个更强但仍然毫无特色的光斑,与此相反,我们的做法导致了一个新型的斑马条纹。
1700931494
1700931495
1700931496
1700931497
1700931498 关于新图案的一个非常奇怪之处是,即使在单缝时的闪光相同的区域,也存在没有光子到达的暗条纹。选取中央暗条纹中的一点X。当每次只有一个狭缝打开时,光子轻易地通过它并到达X。然而当打开两个狭缝时,产生了光子流不能到达X处的反常效应。为什么打开两个狭缝反而降低了光子到达目的地的可能性呢?
1700931499
1700931500 想象一群喝醉酒的犯人,他们摇摇晃晃地走过一个有着两扇门的地牢到外面去。狱卒很细心,从不会打开一扇门,由于某些犯人喝醉了酒,可能会偶然地找到出路。但是两扇门都打开时,他会感到不安。因为当打开两扇门时,由于某种神秘的魔法,阻止醉汉逃出去。当然,这并不是对真实的犯人所发生的情形,但它是量子力学有时会预测的一类事情。
1700931501
1700931502 当光被看作粒子时,这个效应是异乎寻常的,然而将光看作波就很普通了。从两个缝发出的两列波在某些点相互加强,某些点相互抵消。在光的波动理论中,暗条纹是反相消所导致的,要不然称作是相消性干涉。现在仅有的问题是光有时候确实像粒子。
1700931503
1700931504 量子力学中的量子
1700931505
1700931506 电磁波是振动的一个例子。空间中每一点的电场和磁场以一定的频率振动,频率依赖于辐射的颜色[42]。自然界中还有许多其他的振动,下面是几个常见的例子。
1700931507
1700931508 ·钟摆。钟摆来回地摆动,它完成一个完整的摆动大约需要1秒钟。这样的摆动频率是1赫,或者说是每秒1周。
1700931509
1700931510
1700931511
1700931512
1700931513 ·通过弹簧悬挂在天花板上的重物。如果弹簧较硬,那么振动的频率可达好几个赫。
1700931514
1700931515 ·振动的音叉或者小提琴的弦,均可达到几百赫。
1700931516
1700931517
1700931518
1700931519
[ 上一页 ]  [ :1.70093147e+09 ]  [ 下一页 ]