打字猴:1.70095895e+09
1700958950
1700958951
1700958952
1700958953 用波动来解释干涉条纹
1700958954
1700958955 在节节败退后,微粒终于发现自己无法抵挡对方的进攻,于是它采取了以攻代守的战略。许多对波动说不利的实验证据被提出来以证明波动说的矛盾,其中最为知名的就是马吕斯(Étienne Louis Malus)在1809年发现的偏振现象,这一现象和已知的波动论有抵触的地方。两大对手开始相持不下,但是各自都没有放弃自己获胜的信心。杨在给马吕斯的信里说:“……您的实验只是证明了我的理论有不足之处,但没有证明它是虚假的。”
1700958956
1700958957 决定性的时刻在1819年到来了。最后的决战起源于1818年法国科学院的一个悬赏征文竞赛,竞赛的题目是利用精密的实验确定光的衍射效应以及推导光线通过物体附近时的运动情况。竞赛评委会由许多知名科学家组成,其中有比奥(J.B.Biot)、拉普拉斯(Pierre Simon de Laplace)和泊松(S.D.Poission),都是积极的微粒说拥护者。从这个评委会的本意来说,他们或许是希望通过微粒说的理论来解释光的衍射以及运动,以打击波动理论。
1700958958
1700958959 但是戏剧性的情况出现了:一个不知名的法国年轻工程师―菲涅尔(Augustin Fresnel,当时他才31岁)向评委会提交了一篇论文。在这篇论文里,菲涅尔采用了光是一种波动的观点,并以严密的数学推理,极为圆满地解释了光的衍射问题。他的体系洋洋洒洒,天衣无缝,完美无缺,令评委会成员为之深深惊叹。泊松并不相信这一结论,对它进行了仔细的审查,结果发现当把这个理论应用于圆盘衍射的时候,在阴影中间将会出现一个亮斑。这在泊松看来是十分荒谬的,影子中间怎么会出现亮斑呢?这差点使得菲涅尔的论文中途夭折。但菲涅尔的同事,评委之一的阿拉果(François Arago)在关键时刻坚持要进行实验检测,结果发现真的有一个亮点如同奇迹一般地出现在圆盘阴影的正中心,位置亮度和理论符合得相当完美。
1700958960
1700958961 菲涅尔理论的这个胜利成了第二次波粒战争的决定性事件。他获得了那一届的科学奖(Grand Prix),同时一跃成为可以和牛顿、惠更斯比肩的光学界传奇人物。圆盘阴影正中的亮点(后来被误导性地称作“泊松亮斑”)成了波动军手中威力不下于干涉条纹的重武器,给了微粒势力以致命的一击,起义者的烽火很快就燃遍了光学的所有领域。但是,光的偏振问题却仍旧没有得到解决,微粒依然躲在这个掩体后面负隅顽抗,不停地向波动开火。为此,菲涅尔不久后又作出了一个石破天惊的决定:他革命性地假设光是一种横波(也就是类似水波那样,振子做相对传播方向垂直运动的波),而不像从胡克以来大家所一直认为的那样,是一种纵波(类似弹簧波,振子做相对传播方向水平运动的波)。1821年,菲涅尔发表了题为《关于偏振光线的相互作用》的论文,用横波理论成功地解释了偏振现象,攻克了战役中最难以征服的据点。
1700958962
1700958963 大反攻的日子已经到来。微粒说在偏振问题上失守后,已经捉襟见肘,节节败退。到了19世纪中期,微粒说挽回战局的唯一希望就是光速在水中的测定结果了。因为根据粒子论,这个速度应该比真空中的光速要快,而根据波动论,这个速度则应该比真空中要慢才对。
1700958964
1700958965
1700958966
1700958967
1700958968 圆盘衍射与泊松亮斑
1700958969
1700958970 然而不幸的微粒军团在经历了1819年的莫斯科严冬之后,又于1850年遭遇了它的滑铁卢。这一年的5月6日,傅科(Jean-Bernard-Léon Foucault,他后来以“傅科摆”实验而闻名)向法国科学院提交了他关于光速测量实验的报告。在准确地得出光在真空中的速度之后,他又进行了水中光速的测量,发现这个值小于真空中的速度,只有前者的3/4。这一结果彻底宣判了微粒说的死刑,波动论终于在100多年后革命成功,推翻了微粒王朝,登上了物理学统治地位的宝座。在胜利者盛大的加冕典礼中,第二次波粒战争随着微粒的战败而尘埃落定。
1700958971
1700958972 但菲涅尔的横波理论却留给波动一个尖锐的难题,就是以太的问题。光是一种横波的事实已经十分清楚,它的传播速度也得到了精确测量,这个数值达到了30万公里/秒,是一个惊人的高速。通过传统的波动论,我们不难得出它的传播媒介的性质:这种媒介必定是一种异常坚硬的固体!它比最硬的物质金刚石还要硬不知多少倍。然而事实是从来就没有任何人能够看到或者摸到这种“以太”,也没有实验测定到它的存在。星光穿越几亿亿公里的以太来到地球,然而这些坚硬无比的以太却不能阻挡任何一颗行星或者彗星的运动,哪怕是灰尘也不行!
1700958973
1700958974 波动对此的解释是以太是一种刚性的粒子,但它却是如此稀薄,以致物质在穿过它们时几乎不受任何阻力,“就像风穿过一小片丛林”(托马斯·杨语)。以太在真空中也是绝对静止的,只有在透明物体中,可以部分地被拖曳(菲涅尔的“部分拖曳假说”)。
1700958975
1700958976 这个观点其实是十分牵强的,但是波动说并没有为此困惑多久,因为更加激动人心的胜利很快就到来了。伟大的麦克斯韦于1856年、1861年和1865年发表了三篇关于电磁理论的论文,这是一份开天辟地的工作,他在牛顿力学的大厦上又完整地建立起了另一座巨构,而且其辉煌灿烂绝不亚于前者。麦克斯韦的理论预言,光其实只是电磁波的一种。这段文字是他在1861年的第二篇论文《论物理力线》里面特地用斜体字写下的。而我们在本章的一开始已经看到,这个预言是怎样由赫兹在1887年用实验予以证实的。波动说突然发现,它已经不仅仅是光领域的统治者,而且业已成为整个电磁王国的最高司令官。波动的光辉到达了顶点,只要站在大地上,它的力量就像古希腊神话中的巨人那样,是无穷无尽而不可战胜的。而它所依靠的大地,就是麦克斯韦不朽的电磁理论。
1700958977
1700958978 饭后闲话:阿拉果的遗憾
1700958979
1700958980 阿拉果一向是光波动说的捍卫者,他和菲涅尔在光学上其实是长期合作的。菲涅尔的参赛得到了阿拉果的热情鼓励,而菲涅尔关于光是横波的思想,最初也是源于托马斯·杨写给阿拉果的一封信。他和菲涅尔共同作出了对于相互垂直的两束偏振光线的相干性的研究,明确了来自同一光源但偏振面相互垂直的两支光束,不能发生干涉。但在双折射和偏振现象上,菲涅尔显然更具有勇气和革命精神。在两人完成了《关于偏振光线的相互作用》这篇论文后,菲涅尔指出只有假设光是一种横波,才能完满地解释这些现象,并给出了推导。然而阿拉果对此抱有怀疑态度,认为菲涅尔走得太远了。他坦率地向菲涅尔表示,自己没有勇气发表这个观点,并拒绝在这部分论文后面署上自己的名字。于是最终菲涅尔以自己一个人的名义提交了这部分内容,引起了科学界的震动。
1700958981
1700958982 这大概是阿拉果一生中最大的遗憾,他本有机会和菲涅尔一样成为在科学史上大名鼎鼎的人物。当时的菲涅尔虽然崭露头角,毕竟还是无名小辈,而他在学界却已经声名显赫,被选入法兰西研究院时,得票甚至超过了著名的泊松。其实在光波动说方面,阿拉果做出了许多杰出的贡献,不在菲涅尔之下,许多成果还是两人互相启发而致的。在菲涅尔面临泊松的质问时,阿拉果仍然站在了菲涅尔一边,正是他的实验证实了泊松光斑的存在,使得波动说取得了最后的胜利。但关键时候的迟疑,却最终使得他失去了“物理光学之父”的称号。这一桂冠如今戴在菲涅尔的头上。
1700958983
1700958984 上帝掷骰子吗?:量子物理史话(升级版) [:1700958596]
1700958985 Part. 5
1700958986
1700958987 上次说到,随着麦克斯韦的理论为赫兹的实验所证实,光的波动说终于成为了一个板上钉钉的事实。
1700958988
1700958989 波动现在是如此地强大。凭借着麦氏理论的力量,它已经彻底地将微粒打倒,并且很快就拓土开疆,建立起一个空前的大帝国。不久后,它的领土就横跨整个电磁波的频段,从微波到X射线,从紫外线到红外线,从γ射线到无线电波……普通光线只是它统治下的一个小小的国家罢了。波动君临天下,振长策而御宇内,普天之下莫非王土。而可怜的微粒早已销声匿迹,似乎永远也无法翻身了。
1700958990
1700958991 赫兹的实验也同时标志着经典物理的顶峰。物理学的大厦从来都没有这样地金碧辉煌,令人叹为观止。牛顿的力学体系已经是如此雄伟壮观,现在麦克斯韦在它之上又构建起了同等规模的另一幢建筑,它的光辉灿烂让人几乎不敢仰视。电磁理论在数学上完美得难以置信,麦克斯韦最初的理论后来经赫兹等人的整理,提炼出一个极其优美的核心,也就是著名的麦氏方程组。它刚一问世,就被世人惊为天物,其表现出的简洁、深刻、对称使得每一个科学家都陶醉其中。后来玻尔兹曼(Ludwig Boltzmann)情不自禁地引用歌德的诗句说:“难道是上帝写的这些吗?”一直到今天,麦氏方程组仍然被公认为科学美的典范,许多伟大的科学家都为它的魅力折服,并受它深深的影响,有着对于科学美的坚定信仰,甚至认为,对于一个科学理论来说,简洁优美要比实验数据的准确来得更为重要。无论从哪个意义上说,电磁论都是一种伟大的理论。罗杰·彭罗斯(Roger Penrose)在他的名著《皇帝新脑》(The Emperor’s New Mind )一书里毫不犹豫地将它和牛顿力学、相对论和量子论并列,称之为“Superb”的理论。
1700958992
1700958993 物理学征服了世界。在19世纪末,它的力量控制着一切人们所知的现象。古老的牛顿力学城堡历经岁月磨砺、风吹雨打而始终屹立不倒,反而更加凸显出它的伟大和坚固来。从天上的行星到地上的石块,万物都毕恭毕敬地遵循着它制定的规则运行。1846年海王星的发现,更是它所取得的最伟大的胜利之一。在光学方面,波动已经统一了天下,新的电磁理论更把它的光荣扩大到了整个电磁世界。在热方面,热力学三大定律已经基本建立(第三定律已经有了雏形),而在克劳修斯(Rudolph Clausius)、范德瓦尔斯(J.D. Van der Waals)、麦克斯韦、玻尔兹曼和吉布斯(Josiah Willard Gibbs)等天才的努力下,分子运动论和统计热力学也被成功地建立起来了。更令人惊奇的是,这一切都彼此相符而互相包容,形成了一个经典物理的大同盟。经典力学、经典电动力学和经典热力学(加上统计力学)形成了物理世界的三大支柱。它们紧紧地结合在一起,构筑起一座华丽而雄伟的殿堂。
1700958994
1700958995
1700958996
1700958997
1700958998 麦克斯韦James Clerk Maxwell 1831—1879
1700958999
[ 上一页 ]  [ :1.70095895e+09 ]  [ 下一页 ]