1700959000
这是一段伟大而光荣的日子,是经典物理的黄金时代。科学的力量似乎从来都没有这样地强大,这样地令人神往。人们也许终于可以相信,上帝造物的奥秘被他们完全掌握了,再也没有遗漏的地方。从当时来看,我们也许的确是有资格这样骄傲的,因为所知道的一切物理现象,几乎都可以在现成的理论里得到解释。力、热、光、电、磁……一切的一切,都在人们的控制之中,而且所用的居然都是同一种手法。它是如此地行之有效,以致物理学家们开始相信,这个世界所有的基本原理都已经被发现了,物理学已经尽善尽美,它走到了自己的极限和尽头,再也不可能有任何突破性的进展了。如果说还有什么要做的事情,那就是做一些细节上的修正和补充,更加精确地测量一些常数值罢了。人们开始倾向于认为:物理学已经终结,所有的问题都可以用这个集大成的体系来解决,而不会再有任何真正激动人心的发现了。一位著名的科学家说:“物理学的未来,将只有在小数点第六位后面去寻找(9) 。”普朗克的导师甚至劝他不要再浪费时间去研究这个已经高度成熟的体系。
1700959001
1700959002
19世纪末的物理学天空中闪烁着金色的光芒,象征着经典物理帝国的全盛时代。这样的伟大时期在科学史上是空前的,或许也将是绝后的。然而,这个统一的强大帝国却注定了只能昙花一现。喧嚣一时的繁盛,终究要像泡沫那样破灭凋零。
1700959003
1700959004
今天回头来看,赫兹1887年电磁波实验的意义应该是复杂而深远的(10) 。它一方面彻底建立了电磁场论,为经典物理的繁荣添加了浓重的一笔;另一方面却同时又埋藏下了促使经典物理自身毁灭的武器,孕育出了革命的种子。
1700959005
1700959006
我们还是回到我们故事的第一部分那里去:在卡尔斯鲁厄大学的那间实验室里,赫兹铜环接收器的缺口之间不停地爆发着电火花,明白无误地昭示着电磁波的存在。但这个火花很暗淡,不容易观察,于是赫兹把它隔离在一个黑暗的环境里。为了使效果尽善尽美,他甚至把发生器产生的那些火花光芒也隔离开来,不让它们干扰接收器。
1700959007
1700959008
这个时候,奇怪的现象发生了:当没有光照射到接收器的时候,接收器电火花所能跨越的最大空间距离就一下子缩小了。换句话说,没有光照时,我们的两个小球必须靠得更近才能产生火花。假如我们重新让光(特别是高频光)照射接收器,则电火花的出现就又变得容易起来。
1700959009
1700959010
赫兹对这个奇怪的现象百思不得其解,不过他忠实地把它记录了下来,并写成一篇论文,题为《论紫外光在放电中产生的效应》。这是一个神秘的谜题,可是赫兹没有在这上面做更多的探询与思考。他的论文虽然发表,但在当时并没有引起太多人的注意。那时候,学者们在为电磁场理论的成功而欢欣鼓舞,马可尼们在为了一个巨大的商机而激动不已,没有人想到这篇论文的真正意义。连赫兹自己也不知道,他已经亲手触摸到了“量子”这个还在沉睡的幽灵,虽然还没能将其唤醒,却已经给刚刚到达繁盛的电磁场论安排了一个可怕的诅咒。
1700959011
1700959012
不过,也许量子的概念太过爆炸性,太过革命性,命运在冥冥中规定了它必须在新的世纪中才可以出现,而把怀旧和经典留给了旧世纪吧。只是可惜赫兹走得太早,没能亲眼看到它的诞生,没能目睹它究竟将要给这个世界带来什么样的变化。
1700959013
1700959014
终于,经典物理还没有来得及多多体味一下自己的盛世,一连串意想不到的事情在19世纪的最后几年连续发生了,仿佛是一个不祥的预兆。
1700959015
1700959016
1895年,伦琴(Wilhelm Konrad Rontgen)发现了X射线。
1700959017
1700959018
1896年,贝克勒尔(Antoine Herni Becquerel)发现了铀元素的放射现象。
1700959019
1700959020
1897年,居里夫人(Marie Curie)和她的丈夫皮埃尔·居里研究了放射性,并发现了更多的放射性元素:钍、钋、镭。
1700959021
1700959022
1897年,J.J.汤姆逊(Joseph John Thomson)在研究了阴极射线后认为它是一种带负电的粒子流。电子被发现了。
1700959023
1700959024
1899年,卢瑟福(Ernest Rutherford)发现了元素的嬗变现象。
1700959025
1700959026
如此多的新发现接连涌现,令人一时间眼花缭乱。每一个人都开始感觉到了一种不安,似乎有什么重大的事件即将发生。物理学这座大厦依然耸立,看上去依然那么雄伟,那么牢不可破,但气氛却突然变得异常凝重起来,一种山雨欲来的压抑感在人们心中扩散。新的世纪很快就要来到,人们不知道即将发生什么,历史将要何去何从。眺望天边,人们隐约可以看到两朵小小的乌云,小得那样不起眼。没人知道,它们即将带来一场狂风暴雨,将旧世界的一切从大地上彻底抹去。而我们,也即将冲进这暴风雨的中心,去看一看那场天崩地坼的革命。
1700959027
1700959028
但是,在暴风雨到来之前,还是让我们抬头再看一眼黄金时代的天空,作为最后的怀念。金色的光芒照耀在我们的脸上,把一切都染上了神圣的色彩。经典物理学的大厦在它的辉映下,是那样庄严雄伟,溢彩流光,令人不禁想起神话中宙斯和众神在奥林匹斯山上那亘古不变的宫殿。谁又会想到,这震撼人心的壮丽,却是斜阳投射在庞大帝国土地上最后的余辉。
1700959029
1700959030
(1) 不过显然赫兹没有领到奖金。由于问题太难而无人挑战,这个悬赏于1882年就失效了。
1700959031
1700959032
(2) 在他之前,毕达哥拉斯等人也已经有过类似的想法,不过比较原始粗糙。
1700959033
1700959034
(3) 实际上两人相安无事的时间并不长,到了1675年他们又在光的问题上大吵了一架。
1700959035
1700959036
(4) 丹皮尔在《科学史》里说牛顿只是把粒子的假设放在书后的问题(Query)里,并没有下结论,所以不能把粒子说的统治归结到牛顿的权威头上,这似乎说不过去。不谈牛顿一向的态度和行文中明显的倾向,就算在《光学》正文里,也有多处暗含了粒子的假设。
1700959037
1700959038
(5) 原文是“…my supposition is that the Attraction always is in a duplicate proportion to the Distance from the Center Reciprocal”。当然,牛顿十多年前就已经有了类似的概念,但两人当时都无法给出(椭圆)运动轨道的证明,不能算作“发现了平方反比定律”。
1700959039
1700959040
(6) 近来,科学史家们更倾向于认为,胡克并非有意难为牛顿。胡克是以皇家学会的名义与牛顿通信的,而讨论问题并在学会朗读交流结果本来就是他当时的本职工作。胡克后来仍旧不断地与牛顿写信讨论,完全不知道对手已经怒不可遏(可见Koyré和Inwood的论述)。
1700959041
1700959042
(7) 见Nauenberg1994年、 1998年以及他2003年在胡克纪念会议上的报告。
1700959043
1700959044
(8) 我在这里描述的是较大众化的版本。杨最早的实验是用一张卡片把光束分割成两半以达到同样效果,实际上并未用到“双缝”。
1700959045
1700959046
(9) 据说这话是开尔文勋爵说的,不过实际上麦克斯韦在此之前也说过类似的话,虽然他本人对这种看法是持反对态度的。
1700959047
1700959048
(10) 当然,准确地说,是他于1886-1888年进行的一系列实验。
1700959049
[
上一页 ]
[ :1.700959e+09 ]
[
下一页 ]