打字猴:1.700997369e+09
1700997369
1700997370
1700997371
1700997372 等边三角形,锐角三角形,直角三角形,钝角三角形
1700997373
1700997374 等腰三角形定理:如果等腰三角形ABC的边长AB=AC,那么这两条边所对的角一定相等。
1700997375
1700997376
1700997377
1700997378
1700997379 等腰三角形定理:如果AB=AC,那么 ∠B= ∠C
1700997380
1700997381
1700997382 证明:如图所示,从A处画一条直线平分 ∠A(这条直线叫作“角平分线”),与交于点X。
1700997383
1700997384
1700997385
1700997386
1700997387 证明等腰三角形定理时,先画出角平分线,然后利用SAS公理证明两个小三角形全等
1700997388
1700997389
1700997390
1700997391 我们认为BAX与CAX是全等三角形,这是因为BA=CA(ABC是等腰三角形),∠BAX= ∠CAX(AX是角平分线),且AX=AX(这不是输入错误。是两个小三角形的公共边,长度必然相同)。因此,根据SAS公理,这两个小三角形是全等的。由于△BAX△CAX,因此其余的边和角也必然相等,即∠B= ∠C。证明完毕。 □
1700997392
1700997393 延伸阅读
1700997394
1700997395
1700997396
1700997397
1700997398 利用SSS定理也可以证明等腰三角形定理。先取的中点M,令BM=MC,再画出线段。由于BA=CA(等腰三角形),AM=AM,MB=MC(M为中点),因此,根据SSS定理,△BAM△CAM,它们的角也都相等,即∠B= ∠C。
1700997399
1700997400
1700997401
1700997402 两个三角形全等,说明 ∠BAM= ∠CAM,因此也是角平分线。此外,由于∠BMA= ∠CMA,而且它们的和是180°,因此它们都等于90°。也就是说,在等腰三角形中,A的角平分线也是的“垂直平分线”。
1700997403
1700997404
1700997405 顺便告诉大家,等腰三角形定理的逆命题也是正确的:如果 ∠B= ∠C,那么AB=AC。证明过程是:从A画一条角平分线至点X。由于∠B= ∠C(条件),∠BAX= ∠CAX(角平分线),AX=AX,因此根据AAS定理,我们断定 △BAX△CAX。由此可知,AB=AC,ABC是等腰三角形。
1700997406
1700997407 等边三角形的所有边都相等,因此等腰三角形定理适用于等边三角形,从而证明等边三角形的三个内角都相等。由于三角形的内角和是180°,因此我们可以得出下面的推论。
1700997408
1700997409 推论:等边三角形的三个内角都是60°。
1700997410
1700997411 根据SSS定理,如果两个三角形ABC和DEF的三对边都相等(AB=DE,BC=EF,CA=FD),那么它们的内角肯定也相等(∠A= ∠D,∠B= ∠E,∠C= ∠F)。它的逆命题也成立吗?如果三角形ABC和DEF的三对角都相等,那么它们的三对边也都相等吗?如下图所示,答案显然是否定的。
1700997412
1700997413
1700997414
1700997415
1700997416 相似三角形的内角相等,边长成比例关系
1700997417
1700997418
[ 上一页 ]  [ :1.700997369e+09 ]  [ 下一页 ]