打字猴:1.700999414e+09
1700999414 如果by=x,那么y= logbx
1700999415
1700999416 例如,log232 = 5,因为25= 32。底为任意数字b时,前面讨论的对数属性都成立。例如:
1700999417
1700999418 blogbx=xlogbxy= logbx+ logbylogbxn=nlogbx
1700999419
1700999420 不过,在数学、物理学和工程学的大多数领域里,应用最广泛的还是以e为底的对数。这种对数叫作“自然对数”(natural logarithm),记作lnx。也就是说:
1700999421
1700999422 如果ey=x,那么y= lnx
1700999423
1700999424 或者说,对于任意实数x:
1700999425
1700999426 ln ex=x
1700999427
1700999428 例如,利用计算器就可以算出ln 5 = 1.609…,我们在前文中也算出e1.609≈ 5。在本书第11章,我们将更深入地讨论自然对数。
1700999429
1700999430 延伸阅读
1700999431
1700999432 所有科学计算器都可以计算自然对数和以10为底的对数值,但是大多数计算器对其他对数却无能为力。不过,大家不用着急,因为我们可以很轻松地改变对数的底。如果知道某个对数的值,基本上也就知道了所有不同底的对数的值。具体来说,我们可以利用下面这个规则,依据以10为底的对数值得出以b为底的对数值。
1700999433
1700999434 定理:对于任意正数x和y,都有:
1700999435
1700999436
1700999437 logbx=
1700999438
1700999439 证明:令y= logbx,则by=x。两边取对数,即logby= logx。根据指数规则,我们可以得出ylogb= logx。也就是说,y=(logx) / (logb)。证明完毕。 □
1700999440
1700999441 例如,对于任意x> 0,都有:
1700999442
1700999443 lnx= (logx) / (log e) = (logx) / (0.434…) ≈ 2.30 logx
1700999444
1700999445 log2x= (logx) / (log 2) = (logx) / (0.301…) ≈ 3.32 logx
1700999446
1700999447
1700999448
1700999449
1700999450 12堂魔力数学课 [:1700993763]
1700999451 12堂魔力数学课 e与彩票的中奖概率
1700999452
1700999453 同数字π一样,数字e在数学领域的应用也极其广泛,经常会出现在我们意料不到的地方。例如,我们在第8章见过的钟形曲线,它的公式为:
1700999454
1700999455
1700999456 y=
1700999457
1700999458 它的图像(如下图所示)可能是统计学中最重要的图像。
1700999459
1700999460
1700999461
1700999462
1700999463
[ 上一页 ]  [ :1.700999414e+09 ]  [ 下一页 ]