1701001610
1701001611
1701001612
1701001613
1701001614
我们知道,补全为长方形后,石头的总数增加了一倍。也就是说,原来的石头的块数是现在的1/2,用110除以2,我们就可以轻松地知道原来石头的块数是55块。
1701001615
1701001616
这种借助摆石头来做算术的方法,可能看起来有些奇怪,但其实这是一种非常古老的计算手段,数学有多长的历史,这种摆石头算法的历史就有多长。熟悉语言学的读者应该知道,计算一词,英文中叫作calculate,这个词是由拉丁语词汇calculus演化而来的,calculus在拉丁语中的意思正是“计算用的鹅卵石”。要体会计算的乐趣,领略数学的美妙,你并不需要爱因斯坦般的天赋(“爱因斯坦”在德语中的意思是“一块石头”),但手持一些小石块确实能够帮助你更直观、更形象地理解一些巧妙的计算方法。
1701001617
1701001618
1701001619
1701001620
1701001622
X的奇幻之旅:在现实生活中发现数学思维之美 第3章 “敌人的敌人就是朋友”与“负负得正”法则
1701001623
1701001624
一般来说,老师教会学生加法运算以后,就会马上让他们学习减法运算,这恐怕是世界各地数学教育通用的教学方式了。因为加法运算和减法运算所用到的数学技巧基本一样,逆转加法运算的过程就是减法运算了。减法运算最大的难点是“借位”,学会了“借位”的技巧,做减法就变得轻而易举了。实际上,加法中已经有了“进位”的技巧,减法中的“借位”就是加法中“进位”制运算过程的逆运算。如果你会做23+9的运算,那么23-9的运算也应该很容易掌握。
1701001625
1701001626
但实际上,问题并不是这么简单。如果我们在一个更深的层次上探究这个问题,就会发现,减法运算其实给我们制造了一些加法运算中不会出现的复杂问题:减法会产生负数。如果你只有2块曲奇饼干,而我非要从你那里拿走6块曲奇饼干,会产生什么样的结果呢?显然,现实中我无法成功地拿走6块曲奇饼干,因为你根本没有那么多块饼干。但是,从理论上来说,我完全可以从你那里拿走6块曲奇饼干,而你则剩下负4块饼干(先不讨论负4块饼干有什么含义)。
1701001627
1701001628
减法的出现,使得人类不得不扩展我们对数字的认识。负数的概念要比正数的概念抽象得多——从来没有人见过负4块曲奇饼干长什么样子,更加没法吃到负4块曲奇饼干——但是,通过抽象的思维,我们可以想象出负4块曲奇饼干。实际上,要想在数学的世界中继续前进,你就必须学会想象负4块曲奇饼干的概念。日常生活中,负数的概念无处不在,从我们的个人债务到银行账户的欠款;从零摄氏度的温度到地下的停车场,这些都会涉及负数。
1701001629
1701001630
虽然我们都听说过并且时常接触负数的概念,但很多人对负数的真正含义仍然一知半解。我的同事安迪·鲁伊纳曾向我指出,在日常生活中,人们其实一直在使用各种各样有趣的途径,千方百计地绕过令人害怕的负数。在共同基金发给客户的账单上,亏损的数额通常用红色字体来表示,或者是加上括号以区别于赢利的数字,这些小技巧都是为了避免负号的出现。在历史书上,恺撒大帝的出生年份被表示为公元前100年(100 B.C.),这也是为了不写出-100这个令人不安的数字。地下停车场所处的楼层被标记为B1层(地下一层)、B2层(地下二层)等,因为人们不喜欢看到-1层、-2层这样的标示。温度的表示恐怕是唯一的例外,人们有时确实会说:室外温度是-5摄氏度(至少在我居住的美国纽约州伊萨卡市,人们会这么说,不知道世界其他地方的人是怎样表述零摄氏度以下的温度的)。小小的负号好像带着某种令人恐惧的魔力,负号是如此“负面”,以致大家总是唯恐避之不及。
1701001631
1701001632
比负号更加令人不安的是“负负得正”的奇怪法则:负数乘以负数居然会得到一个正数!我想,我有必要试着向大家解释一下“负负得正”法则背后的玄机。
1701001633
1701001634
当我们用一个负数乘以一个正数的时候,这个算式的意思到底是什么呢?比如,我用(-1)×3,这到底是一种什么样的运算呢?我们都知道1×3的意思很简单,就是1+1+1,那么以此类推,(-1)×3的意思自然应该是(-1)+(-1)+(-1),所以(-1)×3应该等于-3。如果你对此还有任何疑问,我们可以用借钱和还钱来进行一个类比:如果你每周向我借1元钱,那么3周以后你一共欠我3元钱,这应该很容易理解。
1701001635
1701001636
理解了(-1)×3的意思,我们只要再进一步,就能理解为什么会有“负负得正”的规律。看看下面这几行算式:
1701001637
1701001638
(-1)×3=-3
1701001639
1701001640
(-1)×2=-2
1701001641
1701001642
(-1)×1=-1
1701001643
1701001644
(-1)×0=0
1701001645
1701001646
(-1)×(-1) =?
1701001647
1701001648
看一下这些等式右边的数字,它们有什么规律呢?很显然,这些数字是逐渐增加的:-3,-2,-1,0……每个算式的得数比上一个算式的得数增加1。所以,从逻辑上来说,(-1)×(-1)的得数必须是1,对吗?
1701001649
1701001650
这是(-1)×(-1)=1的解释方法之一。这种解释方法的优点是,它保留了正常数学运算的规律:适用于正数的规律也应该适用于负数。
1701001651
1701001652
如果你是一位冥顽不化的实用主义者,你可能会问:现实生活中真的是“负负得正”吗?这种规则在现实生活中,真的有对应的现实意义吗?我不得不承认,很多时候“负负得正”的规则似乎并不适用。传统智慧总是教育我们要亡羊补牢、迷途知返,因为“两个错误的行为并不能互相抵消为一个正确的行为”,错上加错的行为只会使结果越错越厉害。在语言上,也有很多“负负不得正”的例子,有时候两次否定仍然表示否定的意思,比如:在英语中,“I can’t get no satisfaction”表示的意思是“我不满意”。(写到这里,我不得不感叹语言是一种多么玄妙的东西,牛津大学的杰出语言哲学家J·L·奥斯汀曾经做过一次语言学的讲座。讲座中,奥斯汀指出:在很多语言里,双重否定表示肯定,但没有任何语言里的双重肯定会表示否定的意思。对此,听众席中的哥伦比亚大学哲学家西德尼·摩根贝沙在台下讽刺地回应道:“说得对,说得对!”)
1701001653
1701001654
但是,在现实生活中,仍然有很多“负负得正”的例子存在着。一个神经元细胞发出的指令可以被另一个神经元细胞发出的指令所抑制。如果第三个神经元细胞发出的指令又抑制了第二个神经元细胞,那么第一个神经元细胞就可以再次发出指令。在这个例子中,第三个神经元细胞发出的指令虽为抑制指令,但对第一个神经元细胞来说,其效果实际上是“兴奋”或者“解除抑制”,这就是双重抑制等于兴奋的一个“负负得正”的例子。在基因和蛋白质的互动过程中,也有这样“负负得正”的例子:有时候,基因片段会因某些分子的抑制作用而不能发展、起作用;而特定的蛋白质可以将这些有抑制作用的分子抑制住,于是基因片段又可以起作用了。
1701001655
1701001656
如果说这些生物学的例子是抽象的,那么我还想到了一个更好、更直接的政治学和社会学的例子。俗语说:“我的敌人的敌人就是我的朋友”,与此相关的说法还有“我的敌人的朋友就是我的敌人”、“我的朋友的敌人就是我的敌人”等。这些十分绕口的话其实都可以用一个三角图形来清楚地表示。
1701001657
1701001658
在下图中,圆圈表示关系中的各方。在这一图形中,各方可以是个人和个人、公司和公司,也可以是国家和国家。连接圆圈的线段表示双方之间的关系,正面的朋友关系用实线表示,负面的敌对关系用虚线表示。
1701001659
[
上一页 ]
[ :1.70100161e+09 ]
[
下一页 ]