1701003779
“风”不知道的是,伊格先生并不存在。伊格先生只是“风”在透明的莫比乌斯带另一侧的倒影而已。维·哈特很有编剧的天赋,她对故事中的图形和文字进行了巧妙的编排。“风”的名字、“风”的家、“风”自己写下的留言,颠倒之后在莫比乌斯带的另一侧看起来恰好是伊格先生的名字、伊格先生的房子,还有伊格先生写给“风”的留言。
1701003780
1701003781
我无法用语言表达出这段影片的妙处。建议你去看一看这个视频,相信你会发现其中的智慧。维·哈特用一个感人的小故事如此生动地演绎出莫比乌斯带的性质,对她的才华我真是由衷地钦佩。
1701003782
1701003783
很多艺术家都从莫比乌斯带迷人的性质中获得了灵感。埃舍尔在他的画作中表现过蚂蚁被永远地困在一个无穷的圈上的情形。雕塑家马克思·比尔和启三都曾在作品中用到过莫比乌斯带的图案。
1701003784
1701003785
世界上最宏伟的莫比乌斯带结构,可能将会出现在筹建中的哈萨克斯坦国家图书馆的建筑中。哈萨克斯坦国家图书馆项目由丹麦BIG建筑公司负责设计。BIG公司打算建一条莫比乌斯带结构的公共步道,“走在这条步道上,墙壁会慢慢变成屋顶,屋顶又会慢慢变成地面,然后地面再变回墙壁”。我想那种感觉一定十分奇妙。
1701003786
1701003787
1701003788
1701003789
1701003790
不光是艺术家,工程师们也会把莫比乌斯带的结构用到设计中去。从维·哈特音乐盒的例子我们知道,一条莫比乌斯带状的播放带的播放时间比普通环状的播放带要长一倍。根据这一性质,B·F·古德里奇公司发明了一项专利技术:莫比乌斯传送带。莫比乌斯传送带一次的运行时间比传统传送带长一倍,因为每次可以把传送带的正反两面都利用到(当然,从技术上来说莫比乌斯带只有一面,但是相信你可以理解这句话的意思)。除此之外,利用了莫比乌斯带性质的专利技术还包括电容器、腹部手术拉钩、带自净功能的干洗机过滤部件等。
1701003791
1701003792
但是,拓扑学在日常生活中最伟大的应用并不是莫比乌斯带,而是切坚果面包(硬面包圈)的技巧。这一技巧同样用到了扭转和连接等概念,掌握这个技巧以后,下次周日早晨再有客人来访时,你就可以好好露一手了。这一技术的发明人是乔治·哈特——我们上文提到的天才女高中生维·哈特的父亲。乔治·哈特是一位几何学家兼雕塑家,他曾担任纽约州立大学石溪分校计算机系的教授,还在纽约市的数学博物馆当过首席展览设计师。乔治·哈特发明了一种切坚果面包的方法,这种方法切出来的坚果面包的两部分是锁链般地连在一起的。
1701003793
1701003794
1701003795
1701003796
1701003797
这种切法的优点有两个:一是能给你邀请来的客人留下极为深刻的印象;二是能产生比普通切法更大的表面积,这样你就能够在一片面包上涂上更多的黄油或者奶油乳酪了(这项技术也许不适用于想减肥的人)。
1701003798
1701003799
1701003800
1701003801
1701003803
X的奇幻之旅:在现实生活中发现数学思维之美 第28章 微分几何:两点之间最短路径不止一条
1701003804
1701003805
从勾股定理到平行线永不相交,这些永恒的真理都是基于一个想象中的二维平面。你有没有想过,为什么人类最早发明的几何学分支是平面几何呢?那是因为在古代,人类认为我们生活的大地就是一个平面。
1701003806
1701003807
平面几何起源于2 500多年前的古印度、古中国、古埃及和古巴比伦。最终,以欧几里得为代表的希腊数学家完善了它,并将其编纂成书。直到今天,平面几何仍是高中几何教学的主要内容(甚至是唯一内容)。但是,几千年以来,随着人类的进化,很多事情已经悄然发生了改变。
1701003808
1701003809
在全球化的今天,我们有了谷歌地球,还可以轻松地乘飞机跨越各大洋和大洲。在这样的环境中,也许我们每个人都应该懂一点儿球面几何,以及球面几何的现代化推广——微分几何。球面几何和微分几何的基本理念,直到大约200年前才被发明出来。卡尔·弗里德里希·高斯和波恩哈德·黎曼是微分几何这一创新事物的先驱者。正是在微分几何的基础上,人类才得以建起一座新的智慧丰碑——爱因斯坦的广义相对论。微分几何的技术细节虽然十分高深,但是它的核心理念却是非常简单而美丽的,任何人只要骑过自行车、见过地球仪,或者玩过橡胶环,就应该可以理解微分几何的核心理念。在理解了微分几何以后,你会发现,旅行中一些看起来很奇怪的事情,其实都是很有道理的。
1701003810
1701003811
比如在我小的时候,我爸爸很喜欢考我一些地理问题。爸爸会问我:“意大利的罗马和美国的纽约哪一个城市位于更北一些的地方?”对于这个问题,我想大部分人都会猜测纽约似乎更靠北一些,但是,其实罗马和纽约几乎在同一个纬度上,严格来说,罗马还要稍微偏北一点儿。在平面的世界地图(平面的世界地图使用的是墨卡托投影,这种画法其实是具有一定的误导性的,实际上,格陵兰岛的面积根本不像地图上看上去那么大)上,纽约和罗马几乎在同一条纬度线上,仿佛从纽约一直向东走,你就会走到罗马。
1701003812
1701003813
可是,当你真的乘飞机从纽约飞往罗马,你就会发现航空公司的航线根本不是一直向东。从纽约起飞以后,飞机会往东北方向飞,环绕加拿大的海岸线。为什么会这样呢?我曾经以为航空公司是为了安全起见而选择尽量在陆地上空飞行,但事实并不是这样的。当你考虑到地球不是一个平面而是一个球体时,你就会明白,这种不符合我们直觉的航线才是纽约到罗马的最短路线。纽约到罗马的最短路线不是一路向西,而是先穿过新斯科舍省和纽芬兰,再飞过大西洋,然后经过爱尔兰和法国,最终到达阳光明媚的意大利。
1701003814
1701003815
1701003816
1701003817
1701003818
在球面上,这样的航线被称为“大圆”的一条弧。就像平面上两点之间直线最短一样,球面上两点间的最短路径是大圆。之所以叫作“大圆”,是因为这些曲线是你能在一个球面上找到的最大的圆。比如,地球的赤道就是一个大圆,同时穿过北极点和南极点的圆也是一个大圆。
1701003819
1701003820
平面上的直线和球面上的大圆,还有另一个共同点:它们都是两点间最直的线。这句话听上去十分奇怪:球面上所有的线都是曲线,为什么大圆会是两点间“最直的线”呢?因为球面上不同曲线的弯曲程度是有所差异的。除了完成一个必要的任务——贴合球的表面——以外,大圆就不再有任何额外的弯曲度了。
1701003821
1701003822
为了让这个性质更加直观,我们尝试这样想:假设你在地球的表面上骑着一辆小自行车,试图沿着某条既定的路线前进。如果这个既定路线是大圆,那么你就可以时刻保持前轮笔直朝前。从这个意义上来说,大圆就是地球表面最直的线。如果你在南极或北极附近沿着一条纬度线骑自行车前行,你则需要不断地转动自行车的车把手,才能不偏离既定路线。
1701003823
1701003824
当然,在各式各样的表面中,平面和球面都算是性质相当简单明了的。人体的表面、易拉罐的表面,或者一个坚果面包的表面——这些不规则的、复杂的表面才是表面的常态。这些表面不仅不对称,还有很多其他的弯曲度,在这样的表面上行走的话一定很容易迷路。在这些非特殊的表面上,要找到两点之间距离最短的路径可不是一件容易的事情,这其中的技术细节是非常复杂和琐碎的。因此,让我们绕开这些复杂的技术问题,用一种直觉化的方法来审视和理解这个问题。这时候,我们就要用到橡皮绳了。
1701003825
1701003826
想象一种光滑而有弹性的橡皮绳,这种橡皮绳会在附着在物体表面的前提下,尽最大努力收缩。有了这种神奇的橡皮绳,找到纽约和罗马间的最短路径就很容易了。同时,我们也可以用这种橡皮绳找出任意表面上的任意两点间的最短路径。只要把橡皮绳的两端分别系在起点和终点上,橡皮绳就会在附着在物体表面的前提下,尽最大努力收缩。最后,橡皮绳绷到最紧,橡皮绳所经过的路径就是这两点间的最短路径。
1701003827
1701003828
当我们用这种方法研究一些比平面和球面稍微复杂一些的表面时,我们就会注意到一个很奇怪的现象:两点之间存在很多条最短的路径,两点之间的最短路径并不是唯一的。比如,在一个易拉罐的外表面上,我们考虑这样的两个点:其中一个点在另一个点的正下方。
[
上一页 ]
[ :1.701003779e+09 ]
[
下一页 ]