1701012935
1. 从左上角出发。
1701012936
1701012937
2. 向右前进一步。
1701012938
1701012939
3. 向左下方运动至表的边缘。
1701012940
1701012941
4. 向下前进一步。
1701012942
1701012943
5. 向右上方运动至表的边缘。
1701012944
1701012945
6. 重复第2步及后续步骤。
1701012946
1701012947
通过这个程序,最终可以走过表中所有有理分数,并且不会有任何遗漏。
1701012948
1701012949
1701012950
1701012951
1701012952
1701012953
可以采取的路线不止一种,但重要的是,沿着康托尔建立的这条路线,我们可以一步一步地走遍所有方格。我们每迈出一步,就会走过一个方格。我们需要做的就是将这些步骤与整数配对,从而按部就班地建立起一一对应的关系。也就是说,总体来看,表中的有理分数集与整数集等势。因此,有理分数集的元素个数是。
1701012954
1701012955
这个结论自然不会让我们大吃一惊。毕竟无穷大非常特殊,而且我们知道下面这个等式是成立的:
1701012956
1701012957
1701012958
1701012959
1701012960
×=
1701012961
1701012962
直觉告诉我们,有理分数集符合这个规律是有道理的。但是,这并不意味着所有数学现象都是合理的。当康托尔使用同样的方法研究另一个数集时,他无比震惊地发现结果竟然大相径庭。
1701012963
1701012964
1701012965
想一想,0—1之间有哪些数字。(康托尔研究的其实不是这些数字,但是0—1的数字考虑起来最简单。)这里说的“数字”指什么呢?不仅仅是整数(如果我们说的0—1这个范围包含边界,那么共有两个整数),也不仅仅是有理分数(0—1之间的有理分数就是第195页表格第一列中的所有数字,也就是分子是1、分母是各个整数的所有分数。它们是所有分数的一个势为的子集)。除了这些数以外,还有无理数,即与2的平方根相类似的数,但我们在这里讨论的无理数数值都在0—1之间。
1701012966
1701012967
从本质上讲,康托尔考虑的其实就是0—1之间的所有小数(即“实数”),而且包含这个范围内所有可能的数字。要使用上面那个方法,我们必须将表格打乱重排,否则小数的开头就会有无数个0,无论多大的纸也写不下这些0。重新排列之后,我们可能会得到下面这张表格:
1701012968
1701012969
1701012970
1701012971
1701012972
下面这个步骤充分展示了康托尔的天才。他按照每次后移一位的方式,从各个数中选出一个数位加粗。然后,他把这些加粗的数字排列起来,再逐项加上1(如果原来的数字是9,加1之后就会变成0)。这样,这些数字串就可以构成一个0—1之间的小数。例如,我们可以从上表得到下面这个小数:
1701012973
1701012974
0.720 441 784 983…
1701012975
1701012976
这个数字非常有意思。它与康托尔表格中的第一个数不同,因为它们的第一个小数位不同;它与表格中的第二个数不同,因为它们的第二个小数位不同;它与表格中的第三个数不同,原因同上。以此类推,它与表格中的所有小数都不相同。也就是说,我们得到的这个小数并不包含在上表中。
1701012977
1701012978
如果我们可以成功地写出0—1之间的所有数字,我们就可以把这些数字与正整数逐个配对,从而证明小数集与自然数集等势。但事实上,我们无法写出所有小数。康托尔告诉我们(并给出了严格证明),0—1之间的数字比整数多。这个集合的势更大,是更大的无穷大。
1701012979
1701012980
1701012981
接下来,康托尔把探索的触角伸向其他维度。他把这个更大的势称作,因为它是0—1之间的连续统的势,也就是数轴上0—1之间所有点构成的集合的大小。然而,我们经常描述的是二维平面或者三维空间里的点,而数学家通过假设,可以轻松自如地考虑任意维度。这些无穷大是否适用于这些假设的维度呢?
1701012982
1701012983
我们同样可以在几乎不使用数学工具的条件下,轻松地把康托尔接下来的证明过程解释清楚。我们通常会使用一组坐标(也就是我们前面讨论过的笛卡儿坐标系)来定义二维平面上的点,这些坐标可能是坐标图上的x和y,也可能是地图上的经度和纬度。因此,边长为1的正方形区域中的所有点都可以用两个0—1之间的实数来定位。
1701012984
[
上一页 ]
[ :1.701012935e+09 ]
[
下一页 ]