1701025484
1701025485
=1/2+1/2+1/2+1/2+……
1701025486
1701025487
这是一个发散级数,其得数不是一个固定值。加项越多,和越大,而且会不断增加,直至突破有限量的界限。这个结果似乎表明,保罗应该极力争取参与该游戏的权利,无论付出多少达科特都心甘情愿。
1701025488
1701025489
这看上去很傻,的确如此!不过,在数学推理告诉我们某个结论似乎很傻时,数学家们不会立刻弃之如敝屣,而是寻找数学推理或者直觉出错的地方。这个难题是丹尼尔·伯努利的堂兄尼古拉斯·伯努利在大约30年前提出来的,人们称之为“圣彼得堡悖论”(St. Petersburg paradox)。这个悖论难住了当时的多名概率学家,他们一直没有找到一个令人满意的答案。后来,丹尼尔·伯努利成功地解决了这个难题,他给出的答案非常有说服力,具有里程碑意义,它为经济学衡量不确定性的价值奠定了基础。伯努利指出,这个悖论的关键问题在于,认为一个达科特的效用就一定是一个达科特。有钱人手中的一个达科特,跟农民手中的一个达科特,两者的效用并不相同。这个道理是显而易见的,因为这两个人对他们手中金币的关心程度是不同的。而且,2 000个达科特的效用并不等于1 000个达科特的2倍,而是略少于后者的2倍。这是因为,如果某个人已经拥有了1 000个达科特,再给他1 000个达科特的话,这笔钱给他带来的效用,就比它给身无分文的人带来的效用小。达科特的数量加倍,不能理解为效用加倍。并不是所有的线都是直线,表现金钱与效用之间关系的那条线就不是直线。
1701025490
1701025491
1701025492
1701025493
1701025494
伯努利认为,效用的增长方式与对数相似,因此,第k次的奖金为2k个达科特,它的效用是k个效用度。别忘了,我们可以大致把对数理解为数字的位数。伯努利的理论认为,有钱人衡量他们手中那一堆美元的价值时,考虑的是“美元”前面那个数字的位数。也就是说,拥有10亿美元的人比拥有1亿美元的人富裕,拥有1亿美元的人比拥有1000万美元的人富裕,两种情况下的效用差是相当的。
1701025495
1701025496
根据伯努利的理论,圣彼得堡悖论的期望效用应该为:
1701025497
1701025498
1/2×1+1/4×2+1/8×3+1/16×4 +……
1701025499
1701025500
于是,该悖论就迎刃而解了。这个算式的和不再是无限大,而且数值也不是很大。我们可以利用下述方法,完美地计算其准确得数。
1701025501
1701025502
1701025503
1701025504
1701025505
第一行算式1/2+1/4+1/8+……的值等于1,这就是我们在第2章讨论过的芝诺悖论算式。第二行算式与第一行相同,只不过每一项都要被2除,因此它的得数是第一行的一半,即1/2。同理,第三行算式中的每一项都是第二行的1/2,它的得数也必然是第二行的1/2,即1/4。以此类推,各行算式得数的和是1+1/2+1/4+1/8+……,它比芝诺悖论算式的值大1,即等于2。
1701025506
1701025507
但是,如果我们不是按行求和,而是按列求和,结果会怎么样呢?我在数家中立体声音响面板上的小洞时,无论横着数还是竖着数,都不会改变结果。同样,和就是和,也不会改变。[2]在第一列中,只有1/2这一个数字;第二列有两个1/4,即1/4×2;第三列有三个1/8,即1/8×3,以此类推。按列求和构成的级数就是伯努利用来解决圣彼得堡悖论时使用的求和算式,得数与倒三角形中各行算式得数的和相同,也等于2。因此,保罗应该下的赌注,就是两个效用度在他的个人效用曲线上所对应的达科特的个数。
1701025508
1701025509
对于效用曲线的形状,我们只知道它会随着钱的数量增加而向下弯曲,除此之外便一无所知。虽然当代经济学家与心理学家不断设计出越来越复杂的实验,但是,仍然无法准确地了解这条曲线的属性。(“现在,可以的话,请把头放在功能性核磁共振成像仪中,找一个舒适的位置。我马上让你看6张扑克牌,上面有6种方案,请按照吸引力由大到小的顺序排序。然后,不介意的话,请你保持这个姿势,我让我的博士后从你的口中取出唾液样本……好吗?”)
1701025510
1701025511
我们知道,对于不同情景中不同的人来说,金钱的效用也是不同的,所以,普适性的效用曲线根本不存在。这个事实非常重要,让我们在准备扩大经济行为的应用范围时做到(或者说应该做到)三思而后行。2008年,我们在第1章提过的对里根政府的经济政策略有溢美之词的哈佛大学经济学家曼昆,在一篇被人们疯狂转载的博客中解释说,如果实行奥巴马提议的增加所得税的政策,就会挫伤他的工作积极性。毕竟,曼昆已经在效用与金钱之间取得了某种平衡,一个小时的薪酬带给他的效用与一个小时无法陪孩子的效用正好相互抵消。如果每个小时的薪酬有所减少,那么对于曼昆而言,这种交换就不值得,因此他会减少工作时间,使自己的收入水平下降,直到他认为陪孩子一个小时的效用与一个小时的薪酬再次持平。里根从明星的立场看待经济政策,他认为在税率上调之后,明星们就会减少拍片数量,曼昆的观点与他一致。
1701025512
1701025513
但是,并不是所有人都与曼昆持相同的观点。更重要的是,人们心目中的效用曲线并不一样。讽刺作家弗兰·勒博维茨(Fran Lebowitz)讲过一个她年轻时在曼哈顿开出租车的故事。她说,每个月一开始她都会出车,但是一旦挣的钱足够支付房租和饮食开支,她就再也不出车了,这个月剩下的时间都会被她用于写作。对勒博维茨而言,超过某个限度之后,金钱带来的效用就基本为零了。因此,她的效用曲线看上去与曼昆的大不相同。在挣够房租之后,她的效用曲线就变成水平的了。如果所得税上升,对弗兰·勒博维茨会有什么影响呢?她不仅不会减少工作量,反而会延长工作时间,只有这样才能让她的收入足够支付房租和填饱肚子。
1701025514
1701025515
1701025516
1701025517
1701025518
伯努利并不是唯一一个定义效用,并知道效用与金钱之间属于非线性关系的人,在他之前,至少有两位研究人员也取得了同样的成果:一个是日内瓦的加布里埃尔·克莱姆,另一个是与克莱姆通信的那位年轻人,也就是研究投针问题的布封。布封对概率的兴趣并不局限于那些客厅游戏,在晚年时期,他回忆起第一次接触令人头疼的圣彼得堡悖论时说:“这个问题困扰我很长时间,我一直没有找出症结所在。我发现,数学计算与普通常识在这个问题上相互冲突,除非我们从道德方面加以考虑。我把这个想法告诉克莱姆先生之后,他说我的想法没错,他还通过一个类似的方法解决了这个问题。”
1701025519
1701025520
布封的结论可以映射出伯努利的观点,而且布封对效用曲线的非线性特征的认识尤为深刻。
1701025521
1701025522
我们不能单凭金钱的数量估算其效用,因为金钱只是财富的一种符号。如果金钱就是财富,即财富带来的幸福与好处和金钱的数量成正比,那么我们有理由依据金钱的数量来估算其效用。但是,人们从金钱中得到的效用未必与金钱的数量成正比。对于有钱人而言,一笔10万埃居的收入带来的愉悦感并不会是1万埃居带来的愉悦感的10倍。而且,金钱的数量一旦超过某个界限,就几乎丧失了所有效用,不能使人们的愉悦感进一步提升。发现一座金山的人,未必比发现1立方英寻[3]金块的人更幸福。
1701025523
1701025524
期望效用理论简单易懂,可以帮助人们从多种选择中挑选出期望效用最高的那一个,因此它具有极强的吸引力。该理论还成功地捕捉到人类决策方法的很多特征,因此,一直以来都是社会学家在定量研究中使用的核心工具之一。1814年,皮尔·西蒙·拉普拉斯(Pierre-Simon Laplace)在他的著作《概率论》(A Philosophical Essay on Probabilities)的最后一页指出:“我们发现,概率论归根结底就是一种普通常识,只不过表现为‘微积分’这种形式。在我们做出某些选择或者某个决策时,概率论算无遗策,我们总可以借助它找出最有利的方案。”
1701025525
1701025526
这段话再次验证了一个观点:数学就是常识的衍生物。
1701025527
1701025528
但是,期望效用理论也不是万能的,它的复杂性再次引出了一个令人头疼的难题。这一次提出这个难题的是丹尼尔·埃尔斯伯格(Daniel Ellsberg),后来,埃尔斯伯格因为向媒体泄露五角大楼文件而为世人所知。(数学界的眼光有时比较狭隘,因此,在提到埃尔斯伯格时,有人说:“在他出政治问题之前,他还是做了一些非常重要的工作的。”这样的说法一点儿也不奇怪。)
1701025529
1701025530
1961年,距离他后来暴露于公众视野还有10年的时间,埃尔斯伯格是兰德公司一位优秀的年轻分析师,是美国政府的核战争决策顾问,就如何防止或限制核战争等提供咨询意见。同时,他还在哈佛大学攻读经济学博士学位。无论是作为决策顾问还是作为博士研究生,他都需要深入思考人类在面临未知情况时的决策过程。当时,期望效用理论在决策数学领域拥有至高无上的地位。冯·诺依曼与摩根斯特恩在他们合作完成的《博弈论与经济行为》(The Theory of Games and Economic Behavior)一书中写道,所有遵从某些规则或公理的人,在做出选择时似乎总希望使效用函数最大化。后来,与亚伯拉罕·瓦尔德同在战时统计研究小组的伦纳德·萨维奇对这个观点加以补充完善,指出这些公理就是在当时不确定条件下的行为标准。
1701025531
1701025532
如今,博弈论与期望效用理论仍然在人们及国家之间的谈判活动中发挥着重要作用。不过,这两种理论的重要性在“冷战”高潮期的兰德公司里被发挥到了极致,五角大楼非常重视冯·诺依曼与摩根斯特恩的著作,组织相关人员认真分析书中的内容。当时,兰德公司的研究人员正在研究人类生活中的某种基本活动:选择与竞争。从事博弈论研究的人,都获得了丰厚的奖金。
1701025533
[
上一页 ]
[ :1.701025484e+09 ]
[
下一页 ]