1701048380
1701048381
1701048382
1701048383
1701048384
1701048385
1701048386
1701048387
1701048388
证明 只须证明对h∈H,表示式h=h1+h2(hi∈Hi)是唯一的.若另有则因而从而即 ▎
1701048389
1701048390
1701048391
命题A.4 设j∶H→F是满同态,并且F是自由交换群,则(Kerj=j-1(0),称为j的核.)
1701048392
1701048393
1701048394
1701048395
证明 取A是F的一个基.规定对应θ∶A→H,使得∀a∈A,j(θ(a))=a.由θ线性扩张得到同态φ∶F→H,它满足jφ=id∶F→F.从而φ是单同态.∀h∈H,记h2=φ(j(h)),h1=h-h2.则h1∈Kerj,h2∈Imφ.如果h∈Kerj∩Imφ,则有f∈F,使得φ(f)=h,于是h=φ(jφ(f))=φ(j(h))=0.由命题A.3,
1701048396
1701048397
1701048398
▎
1701048399
1701048400
推论 设H0是有限生成交换群H的子群,则
1701048401
1701048402
1701048403
1701048404
1701048405
特别地
1701048406
1701048407
1701048408
▎
1701048409
1701048410
3.有限生成交换群的秩
1701048411
1701048412
设H是交换群,记H*是所有从H到R(看作加法群)的群同态的集合,在H*中规定加法运算和数乘运算如下:
1701048413
1701048414
∀f,g∈H*,则f+g∈H*,规定为
1701048415
1701048416
(f+g)(h)=f(h)+g(h), ∀h∈H;
1701048417
1701048418
∀f∈H*,r∈R,则rf∈H*,规定为
1701048419
1701048420
(rf)(h)=rf(h), ∀h∈H.
1701048421
1701048422
不难验证,在这两种运算下H*为实线性空间.
1701048423
1701048424
1701048425
1701048426
1701048427
1701048428
1701048429
设φ∶H1→H2是同态,则规定为不难验证φ*是线性映射.容易看出,若φ是同构,则φ*也是同构.
[
上一页 ]
[ :1.70104838e+09 ]
[
下一页 ]