1701048805
1701048806
1701048807
1701048808
1701048809
1701048810
1701048811
例如G是自由群,基A中有n个元素,则于是是n维自由交换群.下面两个例子的结果在第四章用到.
1701048812
1701048813
1701048814
例1 设G是自由群,{a1,…,am}是一个基.是b生成的正规子群.求G/G0的交换化.
1701048815
1701048816
1701048817
1701048818
1701048819
1701048820
1701048821
1701048822
1701048823
1701048824
1701048825
1701048826
1701048827
1701048828
1701048829
1701048830
记j∶G→G/G0的投射,则有满同态根据命题A.11的推论,从而根据命题A.12,是秩为m的自由交换群,并且若记则是的基;而jG(G0)是生成的自由循环群.记则也是的基,并且jG(G0)是生成的子群.于是
1701048831
1701048832
1701048833
例2 设G是自由群,{a1,b1,…,an,bn}为基.c=[a1,b1]…[an,bn],记G0是c生成的正规子群,计算
1701048834
1701048835
做法同例1.但现在G0≤G′,因此jG(G0)=0.于是
1701048836
1701048837
1701048838
1701048839
1701048840
习 题
1701048841
1701048842
1701048843
1.设F是自由交换群,H1和H2都是交换群.又设j∶H1→H2是满同态,f2∶F→H2是同态,则存在同态f1∶F→H1,使得jf1=f2.
1701048844
1701048845
2.证明两个有限生成交换群的直和也是有限生成的.
1701048846
1701048847
1701048848
3.设F=F1F2,其中F1和F2都是自由交换群,分别以A1和A2为基,则F也是自由交换群,以A1×{0}∪{0}×A2为基.
1701048849
1701048850
1701048851
4.设H1和H2都是交换群,f∶H1→H2和g∶H2→H1是同态,满足fg=id.则
1701048852
1701048853
1701048854
H1=ImgKerf.
[
上一页 ]
[ :1.701048805e+09 ]
[
下一页 ]