1701048855
1701048856
5.任一非空自由交换群有直和因子是有限基自由交换群.
1701048857
1701048858
6.若H的每个元素都是有限阶的,则H*=0.
1701048859
1701048860
7.若φ∶H1→H2是满同态,则φ*是单的.
1701048861
1701048862
8.有限生成交换群的子群也是有限生成的.
1701048863
1701048864
1701048865
1701048866
9.设φ1∶G1*G2→G1满足φ1i1=id,φ1i2平凡,则Kerφ1是G1*G2中由G2生成的正规子群.
1701048867
1701048868
10.若f1∶G1→G2,f2∶G2→G3.证明
1701048869
1701048870
1701048871
1701048872
1701048873
1701048874
1701048875
11.若G0是G的子群,并有同态φ∶G→G0使得φi=id,则
1701048876
1701048877
1701048878
1701048879
1701048881
基础拓扑学讲义 附录B Van-Kampen定理
1701048882
1701048883
1701048884
1701048885
假设X1,X2是拓扑空间X的两个子空间,交集X0=X1∩X2非空.记il∶X0→Xl(l=1,2)和都是包含映射,则
1701048886
1701048887
1701048888
l=1,2.
1701048889
1701048890
或者说有右图所示的交换图表.
1701048891
1701048892
1701048893
1701048894
1701048895
取定x0∈X0.在自由乘积π1(X1,x0)*π1(X2,x0)中,由子集
1701048896
1701048897
{(i1)π(α)(i2)π(α-1)|α∈π1(X0,x0)}
1701048898
1701048899
所生成的正规子群记作G,并规定
1701048900
1701048901
π:=π1(X1,x0)*π1(X2,x0)/G.
1701048902
1701048903
在以上的约定和记号下,Van-Kampen定理可表述为:
1701048904
[
上一页 ]
[ :1.701048855e+09 ]
[
下一页 ]