1701048830
记j∶G→G/G0的投射,则有满同态根据命题A.11的推论,从而根据命题A.12,是秩为m的自由交换群,并且若记则是的基;而jG(G0)是生成的自由循环群.记则也是的基,并且jG(G0)是生成的子群.于是
1701048831
1701048832
1701048833
例2 设G是自由群,{a1,b1,…,an,bn}为基.c=[a1,b1]…[an,bn],记G0是c生成的正规子群,计算
1701048834
1701048835
做法同例1.但现在G0≤G′,因此jG(G0)=0.于是
1701048836
1701048837
1701048838
1701048839
1701048840
习 题
1701048841
1701048842
1701048843
1.设F是自由交换群,H1和H2都是交换群.又设j∶H1→H2是满同态,f2∶F→H2是同态,则存在同态f1∶F→H1,使得jf1=f2.
1701048844
1701048845
2.证明两个有限生成交换群的直和也是有限生成的.
1701048846
1701048847
1701048848
3.设F=F1F2,其中F1和F2都是自由交换群,分别以A1和A2为基,则F也是自由交换群,以A1×{0}∪{0}×A2为基.
1701048849
1701048850
1701048851
4.设H1和H2都是交换群,f∶H1→H2和g∶H2→H1是同态,满足fg=id.则
1701048852
1701048853
1701048854
H1=ImgKerf.
1701048855
1701048856
5.任一非空自由交换群有直和因子是有限基自由交换群.
1701048857
1701048858
6.若H的每个元素都是有限阶的,则H*=0.
1701048859
1701048860
7.若φ∶H1→H2是满同态,则φ*是单的.
1701048861
1701048862
8.有限生成交换群的子群也是有限生成的.
1701048863
1701048864
1701048865
1701048866
9.设φ1∶G1*G2→G1满足φ1i1=id,φ1i2平凡,则Kerφ1是G1*G2中由G2生成的正规子群.
1701048867
1701048868
10.若f1∶G1→G2,f2∶G2→G3.证明
1701048869
1701048870
1701048871
1701048872
1701048873
1701048874
1701048875
11.若G0是G的子群,并有同态φ∶G→G0使得φi=id,则
1701048876
1701048877
1701048878
1701048879
[
上一页 ]
[ :1.70104883e+09 ]
[
下一页 ]