打字猴:1.70104878e+09
1701048780 证明 根据命题A.11,有同构使得hl=j2,见左面图表.于是(hj)j1=j2f即就是f诱导的同态从而 ▎
1701048781
1701048782
1701048783 命题A.12
1701048784
1701048785
1701048786
1701048787
1701048788
1701048789
1701048790
1701048791
1701048792 证明记iλ∶Gλ→G1*G2是包含映射,λ=1,2;记φ1∶G1*G2→G1,是满足φ1i1=id,φ1i2平凡的同态.则有和使得(习题10).根据习题4(或习题11),只用再证明
1701048793
1701048794
1701048795
1701048796
1701048797
1701048798
1701048799
1701048800
1701048801
1701048802 根据命题A.11的推论,我们可得([G2]为G1*G2中由G2生成的正规子群,习题9说明了[G2]=Kerφ1).而与一样,是单同态,从而 ▎
1701048803
1701048804 用归纳法可把命题A.12推广到有限自由乘积的情形:
1701048805
1701048806
1701048807
1701048808
1701048809
1701048810
1701048811 例如G是自由群,基A中有n个元素,则于是是n维自由交换群.下面两个例子的结果在第四章用到.
1701048812
1701048813
1701048814 例1 设G是自由群,{a1,…,am}是一个基.是b生成的正规子群.求G/G0的交换化.
1701048815
1701048816
1701048817
1701048818
1701048819
1701048820
1701048821
1701048822
1701048823
1701048824
1701048825
1701048826
1701048827
1701048828
1701048829
[ 上一页 ]  [ :1.70104878e+09 ]  [ 下一页 ]