打字猴:1.701062495e+09
1701062495 ◎  ◎  ◎
1701062496
1701062497 第一步是列出所有可能的起始状态。例如,让我们重新考虑两个振子的情形。由于有佩斯金的频闪方法,我们无须在所有时刻都观察振子,观察每个周期中的一个时刻就足矣。我们选择振子A发射后返回零位的时刻,那么振子B可能位于零电位与阈值之间的任意位置。将B的电压视为数轴上的一点,零电位是0,阈值是1,我们可以看到不同的可能性组成了一个线段。这个一维线段包括了系统所有可能的起始条件(因为我们知道A位于0点,刚刚释放回到零位;B的电压是唯一的变量,一定位于0和1之间的线段上的某个位置)。
1701062498
1701062499 3个振子创造了一个更大的概率空间。现在我们需要了解两个数字:鉴于A刚刚释放回到0点,我们仍然需要指定这一刻振子B和C的电压数值,我们要看到这两个概率的分布,即B和C电压的所有组合。与几何学上与一对数字对应相似,我们可以把它们看作二维空间中一个点的横纵坐标。
1701062500
1701062501 我们画出x、y平面,与高中数学类似,x轴为横坐标,代表A发射时B的电压。y轴为纵坐标,代表同一时刻C的电压。一对电压值便可表示为此平面中的一个点。
1701062502
1701062503 因为我们允许B和C的电压可以独立地在0和1之间自由变化(包含所有的可能性),相应的点便在一个正方形区域内移动。正如旋转蚀刻素描(2)上的两个旋钮在正方形屏幕上移动机械笔。
1701062504
1701062505 3个振子的结果是,所有可能的初始条件构成了一个正方形区域:一个轴表示B,另一个表示C。在这里,我们不需要为A建立一个轴,因为A的起始位置总是在0点,通过我们对系统的定义便可以知晓(见图1-2)。
1701062506
1701062507
1701062508
1701062509
1701062510 图1-2 3个振子同步模拟示意
1701062511
1701062512
1701062513
1701062514
1701062515 图1-2 3个振子同步模拟示意(续)
1701062516
1701062517 模式变得清晰了。随着振子的增加,我们需要增加更多的维度来说明所有的可能性。4个振子需要一个立方体来表示初始条件,5个振子则需要一个四维超立方体来表示,而n个振子则需要n–1维的超立方体来表示。这听起来令人难以置信,但如果你尝试去描绘它的话,它确实如此。但是在数学形式上,处理所有维度的方法都是一样的,并不存在新的困难。所以,我选择了继续关注3个振子的情形,它包含了所有的主要思想。
1701062518
1701062519 ◎  ◎  ◎
1701062520
1701062521 下一步是将动力学状态(即系统随时间的演化)转化成为我们正在绘制的图形框架。我们的目标是预测系统在给定振子B和C的初始条件下,最终是否会同步。
1701062522
1701062523 你可以想象一下我们让系统运行后会发生什么。所有振子都朝向阈值上升,然后发射,最终回到零位;它们也同样会对其他振子的刺激做出反应。为了去除冗余的信息,我们再次利用频闪法,让系统在黑暗中运行,直到下一次振子A发射后回到零位,振子B和C做出反应。然后打开闪光灯,用照片记录下B和C的新位置。
1701062524
1701062525 在几何图形中看来,正方形中的旧点就像刚刚跳跃到了一个新点,即B和C更新后的电压。换句话讲,系统的动力学演化等同于一次转变,即把正方形中任意给定的点转移到新的一点,转移的依据是一些复杂的规则,取决于充电曲线的形状和刺激的大小。
1701062526
1701062527 这个过程是可以重复的,新点可以视为起始点,然后通过变换转移到其他位置,它一次次地重复,蹦蹦跳跳地从正方形中的一个点跳跃到另一个点。如果系统注定会同步,那么这个点最终会跳跃到正方形的左下角,即电压坐标为(0,0)的点,这意味着两个振子同时到达了零电位。为什么会是这个角落?因为这是振子A的位置。根据我们对频闪的定义,A刚刚发射并复位,所以它的电压为0。在同步状态下,其他两个振子的电压也是0。
1701062528
1701062529 原则上,针对每个初始点的情况,都可以计算出最终结果。如果所有振子最终都同步发射,那么我们就把这个初始点称为“好点”,否则就是“坏点”。我和伦尼从未找到一种方法来准确判断每个点的好坏,但我们设法证明了几乎所有的点都是好点。坏点虽然存在,但是数量很少而且十分稀疏,把它们集中起来并不占面积。换言之,如果你随机选取一个点,完全不可能选到坏点。
1701062530
1701062531 这听起来或许很荒谬:如果坏点存在,你或许认为运气总会让我选到它,但事实上并不会发生。这就像往圆靶上掷飞镖,并要求它精确地落在两个分数之间的分界线上,这已经非常不可能了,而现在我们知道分界线没有宽度(就像要求它没有面积一样),这时你就可以明白为什么随机的投掷永远不会满足要求了。
1701062532
1701062533 这是伦尼对于坏点的看法,虽然我们对好点更感兴趣。他的策略很容易让人联想到艺术设计中的负空间概念,即想要了解一个物体就要去了解物体周围的空间,特别是他找到了一种方法可以证明坏点不占面积。
1701062534
1701062535 为了表现出论证的风格,我们可以专注于坏点中的坏点,我将这些点称为“极坏点”。这些是抵抗同步趋势最强烈的点,它们从未经历过吸收。而当系统从极坏点启动的时候,没有任何一对振子会同步,更别说整个群体了。
1701062536
1701062537 为了了解为什么极坏点不占面积,我们把它们看成一个集合,进而检验当我们把变换应用到该集合中的所有点时,会发生什么。每个极坏点都会跳到其他地方,但变换后它仍是极坏点。这几乎是个无限循环:如果一点永远不会被吸收,那么经过一次变换后,它仍然永远不会被吸收。因此,新点还是极坏点。由于初始集合包括所有的极坏点(根据定义),所以这个新点必定潜伏在其中的某个地方,再从这里开始新的变换。
1701062538
1701062539 结论是,变换后的集合完全落在初始区域之内。更直观地讲,就像减肥广告中经常使用的“减肥前”和“减肥后”的对比照片那样。变换后的集合,即“减肥后”的照片,完全包含在了“减肥前”的照片之内,正如减肥广告所承诺的那样。
1701062540
1701062541 到目前为止,我们的论据中尚未使用任何关于充电曲线形状以及刺激大小的信息。当最终把这些细节考虑在内的时候,我们遇上了一个乍看上去似乎有些矛盾的问题,然而它实际上是论据的要点。我和伦尼能够证明“减肥前”和“减肥后”的变换有点像复印机的放大功能。任何一组点经过变换后都会放大,这与你选择的点的集合无关,就像与你放在复印机上的图片无关一样。而任何一组点的区域都会增大,特别是极坏点的集合也会放大。这里需要注意的是,这意味着极坏点的集合膨胀了,而不是收缩了,似乎与我们之前得出的结果相矛盾。更准确地说,变换后的极坏点的集合必须落在初始集合的内部,而现在它的范围却变大了,这似乎是不可能的。唯一让两个结论兼容的方法是:初始集合不占据任何区域,就像“减肥前”的照片是一根棍子的形象,这样就不存在矛盾了。当乘以一个大于1的数字时,它的面积仍然是0,所以变换后的集合可以位于初始区域内部。这正是我们想要展示的:极坏点不占据任何面积。所以如果你随机选取初始状态的话,那么你永远无法选取它们。这就是这个模型中同步一定会发生的原因。
1701062542
1701062543 同样的论据也适用于任意数量的振子,当有4个或更多的振子时,需要对模型进行轻微修改,用立方体或超立方体替换二维平面。在任何情况下,起始点位于坏点的概率总是0,因此佩斯金是正确的。在他的振子模型中,每个振子完全相同,并通过脉冲相互耦合,在这种情况下,每个振子最终都会一齐发射。
1701062544
[ 上一页 ]  [ :1.701062495e+09 ]  [ 下一页 ]