1701105598
科学与假设 第二章 数学量和经验
1701105599
1701105600
要获悉数学家对连续统(continuum)任何理解,人们不应询问几何学。几何学家总是企图或多或少地想象他所研究的图形,但是他的表象在他看来仅仅是一种工具;在创造几何学时,他要利用空间,正如他用粉笔画图一样;对非本质的东西不应当赋予过多的权重,其重要性往往并不比粉笔的白色更多一些。
1701105601
1701105602
纯粹的解析家并不害怕这一危险。他使数学科学脱离所有无关的元素,而且他能够回答我们的问题:“严格地说来,数学家就其进行推理的这个连续统是什么呢?”许多对他们的技艺进行沉思的解析家已经做出了回答;例如,塔纳里(Tannery)先生在他的《单变函数论导论》一书中就这样作了。
1701105603
1701105604
让我们从整数的标度开始;在两个连续步骤之间插入一个或多个中间步骤,然后在这些新步骤中再插入其他步骤,如此类推,以至无穷。这些步骤将是所谓的分数、有理数或可通约数。但是,这还不够;无论如何,在这些已经是无限个数的项之间,还必须插入称之为无理数或不可通约数的其他数。在更进一步之前,我们要评论一下。如此设想的连续统,只不过是按某种顺序排列起来的、在数目上无限的个体的集合物,它虽则为真、但却是相互外在的。这不是通常的概念,其中假定,在连续统的元素之间,存在着一类使它们成为整体的密切的结合物,在那里,点不是在线之先,而是线在点之先。从“连续统是相重数(multiplicity)的单位(unity)”这一受人称颂的公式中,只保留着多样性(multiplicity),统一性(unity)却消失了。解析家在像他们所作的那样定义连续统时,他们仍然是正确的,因为只要他们夸耀他们的严格性,他们总是正好以此公式推理的。这足以告诉我们,真正的数学连续统是与物理学家的连续统和形而上学家的连续统大相径庭的东西。
1701105605
1701105606
也许可以说,满足于这个定义的数学家受到词的愚弄,为了解释这些中间步骤如何被插入,为了证明这样做是可能的,就必须精确地讲出每一个中间步骤的是什么。但是,那就错了;在他们的推理〔1〕中所运用的这些步骤的唯一特性是在如此这般的步骤之前或之后存在的特性;因此,也唯有这一特性应当出现在定义中。
1701105607
1701105608
这样看来,中间项应该如何插入不需要我们涉及;另一方面,没有一个人会怀疑这种操作的可能性,除非他忘记了,在几何学家的语言中,可能的仅仅意味着无矛盾。
1701105609
1701105610
不管怎样,我们的定义还不完备,我将在这段冗长的题外话之后再谈及它。
1701105611
1701105612
不可通约数的定义。柏林学派的数学家,尤其是克罗内克(Kronecker),不用整数以外的任何材料,致力于构造分数和无理数的这一连续标度。照此看来,数学连续统也许是心智的纯粹创造,经验大概并未参与其中。
1701105613
1701105614
有理数概念对他们来说似乎没有困难,他们主要力求定义不可通约数。可是,在这里介绍他们的定义之前,我必须议论一下,以抢先保证不引起那些不熟悉几何学家习惯的读者的惊奇。
1701105615
1701105616
数学家研究的不是客体,而是客体之间的关系;因此,只要关系不变,这些客体被其他客体代换对他们来说是无关紧要的。在他们看来,内容(matter)是不重要的,他们感兴趣的只是形式。
1701105617
1701105618
不想到这一点,就无法理解戴德金(Dedekind)竟然会把纯粹的符号称为不可通约数,也就是说,这种数完全不同于应当是可度量的并且几乎是可触知的量的普通观念。
1701105619
1701105620
现在,让我们看看戴德金的定义是什么:
1701105621
1701105622
可通约数能够以无穷方式分为两类,以致第一类中的任何数都大于第二类中的任何数。
1701105623
1701105624
也可能会出现这种情况:在第一类数中,有一个数小于所有其他数;例如,如果我们把所有大于2的数和2本身排在第一类,把所有小于2的数排在第二类,那么很清楚,2将是第一类所有数中最小的。数2可以选来作为这种分类的符号。
1701105625
1701105626
相反地,也可能会出现下述情况:在第二类数中,有一个数大于所有其他数;例如,如果把所有大于2的数排在第一类,把所有小于2的数和2本身排入第二类,情况就是这样。在这里,数2再次可以选作分类的符号。
1701105627
1701105628
但是,同样完全可以发生下述情况:在第一类中既不存在小于所有其他数的数,在第二类中也不存在大于所有其他数的数。例如,假定我们把其平方大于2的所有可通约数放入第一类,把其平方小于2的所有可通约数放入第二类。这里没有其平方恰恰是2的数。显然,在第一类中没有小于所有其他数的数,因为不管一个数的平方多么接近2,我们总是能够找到一个可通约数,其平方更接近于2。
1701105629
1701105630
按照戴德金的观点,不可通约数
1701105631
1701105632
1701105633
1701105634
1701105635
无非是把可通约数分开的这一特殊式样的符号;于是,对于每一种分开的式样,对应着一个可通约数或不可通约数作为它的符号。
1701105636
1701105637
可是,满足这一点也许未免过于轻视这些符号的来源了;依然要说明,我们如何被导致把一种具体的存在赋予它们,此外,甚至对于分数本身来说,一开始不就存在着困难吗?如果我们预先不了解我们认为是无限可分的内容即连续统,我们会有这些数的概念吗?
1701105638
1701105639
物理连续统。我们于是问自己,数学连续统的概念是否只是从经验而来。如果是,那么经验的粗糙材料——这就是我们的感觉——也许容许度量。我们可能被诱使认为,它们实际上就是如此,由于最近有人企图去测量它们,甚至提出了一个通称费希纳(Fechner)定律的规律,按照这个定律,感觉与刺激的对数成正比。
1701105640
1701105641
然而,如果我们较为仔细审查一下曾经试图建立这个定律的实验,我们将会得出绝然相反的结论。例如,人们观察到,10克的重物A和11克的重物B产生相同的感觉,重物B与12克的重物C同样无法区分,但是重物A却很容易与重物C区别开来。于是,经验的粗糙结果可以用下述关系来表示:
1701105642
1701105643
A=B,B=C,A<C,
1701105644
1701105645
可以把这些关系视为物理连续统的公式。
1701105646
[
上一页 ]
[ :1.701105597e+09 ]
[
下一页 ]