1701105667
为简便起见,让我把按照与可通约数的标度相同的规则形成的项的每一个集合称为一阶数学连续统。如果我们进而按照形成不可通约数的规律插入新的步骤,我们将会得到我们所谓的二阶连续统。
1701105668
1701105669
第二阶段。迄今,我们仅仅是迈出了第一步;我们说明了一阶连续统的起源;但是,有必要看到,为什么甚至连它们也不是充分的,为什么必须发明不可通约数。
1701105670
1701105671
如果我们试图想象一条线,那么它必须具有物理连续统的特征,也就是说,除非具有某一宽度,否则我们将无法描绘它。于是,两条线在我们看来似乎形成了两条狭带,如果我们满足于这种粗糙的图像,那么显而易见,若两线相交,则它们将拥有公共部分。
1701105672
1701105673
可是,纯粹几何学家却做出进一步的努力;他完全放弃了感官的帮助,试图达到没有宽度的线的概念、没有广延的点的概念。他只有把线视为不断变窄的带子的极限,把点视为不断缩小的面积的极限,才能够得到这个概念。其次,不管我们的两条相交的带子多么窄,它们总有公共的面积,带子越窄,面积越小,它们的极限将是纯粹几何学家所谓的点。
1701105674
1701105675
这就是人们说两条相交的线具有公共点的原因,这个真理似乎是直觉的。
1701105676
1701105677
然而,如果线被设想为一阶连续统,也就是说,在几何学家所画的线上只能找到具有有理数坐标的点,那它就含有矛盾。例如,只要人们坚持直线和圆的存在,则矛盾是很明显的。
1701105678
1701105679
事实上,很清楚,假如唯有其坐标是可通约数的点才被认为是真实的,那么正方形的内接圆和这个正方形的对角线便不会相交,因为交点的坐标是不可通约的。
1701105680
1701105681
这还不可能是充分的,因为我们以这种方式得到的只是某些不可通约数,而不是全部不可通约数。
1701105682
1701105683
可是,设想一下一直线分为两条射线。每条射线在我们的想象中似乎都是某种宽度的带子;而且,这两条带子将相互叠加,由于在它们之间必须没有空隙。这个公共部分在我们看来好像是一点,当我们力图把带子想象得越来越窄时,该点将总是保留着,以至于我们承认,若一直线被切割为两条射线,则它们的公共边界是一个点,这是直觉的真理;在这里我们辨认出戴德金(Dedekind)的概念:不可通约数被视之为两类有理数的公共边界。
1701105684
1701105685
这就是二阶连续统的起源,这恰恰是所谓的数学连续统。
1701105686
1701105687
摘要。简而言之,心智具有创造符号的能力,从而正是心智,构造了只是符号特殊系统的数学连续统。其能力只是受到避免所有矛盾的必要性的限制;但是,只有经验向那里给心智提供刺激物,心智才能利用这种能力。
1701105688
1701105689
在所考虑的情况下,这种刺激物是从感觉的粗糙材料中引出的物理连续统的概念。不过,这个概念导致了一系列的矛盾,必须使我们自己相继从这些矛盾中摆脱出来。照此办理,我们势必想象越来越复杂的符号系统。至今,我们在其中停下来的系统不仅无内部矛盾(在我们经过的所有的阶段已经如此),而且与各种所谓的直觉的命题也无矛盾,这些直觉命题是从或多或少经过提炼的经验概念中推导出来的。
1701105690
1701105691
可测量的量。迄今为止,我们所研究的量都不是可测量的;我们固然能够说这些量中的一个给定量是否比另一个大,但却不能说它是否比另一个大一倍还是大两倍。
1701105692
1701105693
截至目前,我仅仅考虑了我们的项排列的顺序。可是,就大多数应用来说,这并不充分。我们必须学会比较把任何两项分开的区间。只有在这个条件的基础上,连续统才会变为可测量的量,算术运算才是可应用的。
1701105694
1701105695
这只能借助新的、特殊的约定来进行。我们将公认,在这样的情况下,A项和B项之间的区间等于C项和D项之间的区间。例如,在我们的著作的开头,我们曾从整数的标度开始,我们设在两个相继步骤之间插入n个中间步骤;好了,这些新步骤根据约定将被视为是等距离的。
1701105696
1701105697
这是定义两个量的加法的方式,因为若区间AB根据定义等于区间CD,则区间AD根据定义将是区间AB和CD之和。
1701105698
1701105699
这个定义在很大程度上是任意的。然而也不完全如此。它服从某些条件,例如服从加法交换律和结合律。不过,一旦选定的定义满足这些法则,选择就无关紧要了,列举它也就无用了。
1701105700
1701105701
几点评论。现在,我们能够讨论几个重要的问题:
1701105702
1701105703
1°心智的创造力由于数学连续统的创造而枯竭了吗?
1701105704
1701105705
不,杜布瓦-雷蒙(Du Bois-Reymond)以引人注目的方式证明这一点。
1701105706
1701105707
我们知道,数学家区分不同阶的无限小,二阶无限小不仅以绝对的方式是无限小,而且相对于一阶无限小也是无限小。不难设想分数阶的无限小乃至无理数阶的无限小,从而我们再次发现数学连续统的标度,这正是我们在前几页所处理的。
1701105708
1701105709
再者,有些无限小相对于一阶无限小是无限小,相反地,它们相对于1+ε阶无限小则是无限大,而不管ε可能多么小。于是,这里有插入级数中的新项,如果可以容许我回复到不久前使用过的、虽不怎么通用但却十分方便的措词,那么我将说,这样便创造了一种三阶连续统。
1701105710
1701105711
要再进一步是很容易的,但这却是无用的;人们只能想象没有应用可能的符号,没有一个人想这样做。考虑到不同阶的无限小而导致的三阶连续统本身并没有有用到足以赢得公民身份,几何学家只是把它视为珍奇的玩意儿。心智运用它的创造能力,只有在经验需要它的时候才行。
1701105712
1701105713
2°一旦有了数学连续统的概念,人们能免除类似于产生它的那些矛盾吗?
1701105714
1701105715
不能,我将举一个例子。
1701105716
[
上一页 ]
[ :1.701105667e+09 ]
[
下一页 ]