打字猴:1.701107001e+09
1701107001
1701107002 牛顿定律本身又如何呢?它的如此长久未被识破的简单性,也许只是表观的。谁知道它是否由于某种复杂的机制,由于受到不规则运动激励的难以捉摸的物质的影响呢,谁知道它是否只有通过平均作用和大数作用才变简单了呢?无论如何,不假定真实定律包含补余项是困难的,这些项在小距离的情况下是可以察觉的。假如在天文学中这些项作为牛顿定律的修正可以忽略,假如该定律因此恢复了它的简单性,那也许只是因为天体的距离极大的缘故。
1701107003
1701107004 毫无疑问,如果我们的研究方法变得越来越透彻,我们便会在复杂的东西之下发现简单的东西,然后在简单的东西之下发现复杂的东西,接着再在复杂的东西之下发现简单的东西,如此循环不已,我们不能预见最后的期限是什么。
1701107005
1701107006 我们必须停止在某个地方,要使科学是可能的,当我们找到简单性时,我们就必须停下来。这是唯一的基础,我们能够在这个基础上建立我们的概括的大厦。但是,这种简单性仅仅是表观的,该基础将足够牢固吗?这是必须研究的问题。
1701107007
1701107008 为此目的,让我们看看,关于简单性的信念在我们的概括中起什么作用。我们已在为数众多的特例中证实了简单的定律;我们拒不承认这种如此经常重复的一致只能是偶然性的结果,我们得出结论:该定律必须在普遍情况下为真。
1701107009
1701107010 开普勒注意到,第谷(Tycho)所观察的行星的位置都在一个椭圆上。他从来也没有片刻想到,由于机遇的奇怪作用,第谷每次观察天象,都是在行星的真实轨道正巧与这个椭圆相交之时。
1701107011
1701107012 不管简单性是真实的,还是它掩盖着复杂的实在,这是什么关系呢?或者它是由于降低个体差异的大数的影响,或者它是由于容许我们忽略某些项的一些量或大或小的作用,它决不是由于机遇。这种简单性不管是真实的还是表现的,总是有原因的。这样一来,我们始终能够遵循同一推理过程,如果在几个特例中观察到简单性,我们便能够合理地假定,它在类似的案例中还是真实的。否认这一点也就是赋予机遇一种不能允许的作用。
1701107013
1701107014 可是,其中仍有区别。如果简单性是实在的和基本的,那么即使我们测量手段的精度提高了,这种简单性依然如故。因此,如果我们相信自然界本质上是简单的,我们必然能从近似的简单性推论出严格的简单性。这是以前所做过的东西;这是我们不再有权利去做的东西。
1701107015
1701107016 例如,开普勒定律的简单性仅仅是表观的。这并不妨碍它们十分近似地应用于类似于太阳系的一切系统;但是,这却使它们不是严格精确的。
1701107017
1701107018 假设的作用。一切概括都是假设。因此,假设有着必不可少的作用,这永远是谁也无法辩驳的。不过,它应当总是尽可能早地、尽可能经常地受到证实。当然,如果它经不起这种检验,人们就应该毫无保留地抛弃它。这正是我们通常所做的工作,但是有时人们却有点儿病态情绪。
1701107019
1701107020 好了,甚至这种病态情绪也不是正当的。真正抛弃了他的假设之一的物理学家反而应当十分高兴;因为他找到了一个未曾料到的发现机会。我想,他的假设并不是毫无考虑地采纳的;这个假设考虑了一切似乎能够参与现象的已知因素。如果检验不支持它,那正是因为存在着某些未曾预期的、异乎寻常的东西;因为在那里存在着将要去寻找的未知的新颖的东西。
1701107021
1701107022 可是,被抛弃的假设是毫无成效的吗?远非如此,可以说,它比真实的假设贡献更大。它不仅是决定性实验(decisive experiment)的诱因,而且若不做这个假设,该实验即使碰巧做成功,也不会从中推出什么东西。人们不会看到异常的东西;人们只不过多编入了一个事实,而不能从中演绎出最小的结果。
1701107023
1701107024 现在要问,在什么条件下利用假设而毫无危险呢?
1701107025
1701107026 服从实验的坚定决心是不够的;还有危险的假设;首先,尤为重要的是不言而喻的和无意识的假设。由于我们是在不了解实验的情况下做假设的,因此我们无力抛弃这些假设。可是在这里,数学物理学再次能够帮助我们。因为数学物理学是以精确为特征的,所以它迫使我们制定一切假设,我们在没有它时也可以做假设,但却是无意识地做出的。
1701107027
1701107028 此外,我们要注意,重要的是不要过分地增加假设,只能一个接一个地做假设。如果我们在若干假设的基础上构造理论,如果实验否证它,我们前提中的哪一个必须改变呢?这将是不可能知道的。相反地,如果实验成功了,我们可以认为我们一举证明了所有假设吗?我们会相信只用一个方程就能决定几个未知数吗?
1701107029
1701107030 同样,我们务必仔细区分各类假设。其中一类假设是极其自然的,人们几乎不能避免它。人们难得不假定,十分遥远的物体的影响完全可以忽略,小移动遵循线性定律,结果是其原因的连续函数。我同样将要讲对称性给予的条件。事实上,这一切假设形成了数学物理学所有理论的公共基础。它们是最后应该被舍弃的东西。
1701107031
1701107032 还有第二类假设,我将称其为中性假设。在大多数问题中,解析家在计算之初就假定,或者物质是连续的,或者相反,物质是由原子构成的。他可以做相反的假定,而不改变他的结果。他只可能比较费神地得到这些结果;这就是一切。因此,譬如实验确认(confirmation)了他的结论,他可以认为他证明了原子的真实存在吗?
1701107033
1701107034 在光学理论中,引入了两种矢量,其一被看做速度,其二被视为涡旋。这里还是一个中性假设,因为采取正好相反的假设,也能得到同样的结论。因此,实验成功也不能证明第一个矢量实际上是速度;实验只能证明一件事,即它是矢量。这是在前提中实际引入的唯一假设。为了把我们软弱的心智所要求的具体外观给予它,那就必须或者视其为速度,或者视其为涡旋,按同样的方式,或者必须用字母x表示它,或者必须用字母y表示它。然而,不管结果如何,正像这不证明把它称为x而不称为y是对还是错一样,这也不证明把它看做速度是对还是错。
1701107035
1701107036 只要这些中性假设的特征不被误解,它们就永无危险。这些假设可能是有用的,它们或者作为计算的技巧,或者有助于我们理解具体的图像,或者如人们所说的那样坚定我们的观念。从而没有排除它们的场合。
1701107037
1701107038 第三类假设是真正的概括。它们是实验必须确认或否证的假设。不管确认或宣告不适用,它们将总是富有成效的。但是,由于我已经提出的理由,它们将只有在它们为数不太多的情况下才是富有成效的。
1701107039
1701107040 数学物理学的起源。让我们进一步深究一下,比较仔细地研究一下容许数学物理学发展的条件。我们立即看到,科学家的努力总是为了把实验直接给出的复杂现象分解为为数众多的基本现象。
1701107041
1701107042 这可以用三种不同的方式来作:首先,在时间里分解。其目的仅仅是把每一时刻与紧挨它的前一时刻联系起来,而不是把现象的渐次发展包容在它的整体中。人们承认,世界的实际状态只依赖于紧挨着的过去,也可以说,它不受遥远的过去的记忆的直接影响。由于这个公设,我们不去直接研究现象的整个接续,可以把我们自己局限于它的“微分方程”。我们用牛顿定律代替开普勒定律。
1701107043
1701107044 其次,我们尝试在空间中分析现象。实验给予我们的是一堆混乱的事实,这些事实在相当大的舞台上演出。我们必须试图发现基元现象,这些现象反而将定域在很小的空间区域。
1701107045
1701107046 举几个例子也许可以更充分地理解我的思想。假如我们希望研究正在冷却的固体的温度分布,我们永远也不会成功。如果我们想到固体的一点不能直接把它的热传给遥远的点,那么一切就变得简单了;该点将把它的热仅仅传给紧邻接的点,然后热流逐渐地到达固体的其他部分。基元现象是两个相邻点之间的热交换。只要我们承认——这是很自然的——它不受其距离是易觉察的分子的温度的影响,那么问题就被严格定域了,也就比较简单了。
1701107047
1701107048 我折弯一根棒。它将呈现出十分复杂的形状,直接研究这种形变是不可能的。但是,不管怎样,我能够着手处理它,只要我注意到棒的弯曲是棒的很少的要素形变的结果,而且这些要素每一个的形变只与直接施加在它上面的力有关,而与可能作用在其他要素上的力根本无关。
1701107049
1701107050 我可以毫不费力地举出许多例子,在所有这些例子中,我们承认不存在超距作用,或者至少认为不存在大距离的作用。这是一种假设。它并非总是为真,引力定律向我们表明了这一点。因此,它必须受到证实。如果它被确认了,即使是近似地确认了,那也是宝贵的,因为它能使我们至少用逐次逼近法来建造数学物理学。
[ 上一页 ]  [ :1.701107001e+09 ]  [ 下一页 ]