1701107051
1701107052
如果这个假设经不起检验,那我们就必须寻找其他类似的东西;因为还有其他手段达到基元现象。如果几个物体同时作用,那么可能发生这样的情况:它们的作用可以是独立的,而且或者作为矢量,或者作为标量,彼此简单地相加。基元现象因而是孤立物体的作用。或者,我们不得不再次处理小运动,或更普遍地处理小变分(variations),这服从众所周知的叠加律。于是,所观察到的运动将被分解为简单的运动,例如声被分解为谐音,白光被分解为单色光。
1701107053
1701107054
当我们发现在什么方向对于寻找基元现象来说是可取的时候,我们用什么办法才能达到目的呢?
1701107055
1701107056
首先,常常会发生这种情况:为了检测它,或者更恰当地讲为了检测它对我们有用的部分,没有必要深入到机制之内;大数定律就足够了。
1701107057
1701107058
让我们再举一个热传播的例子。每一个分子都向每一个邻近的分子发出辐射线。我们并不需要知道按照什么定律。如果我们就此做出任何假定,那么它可能是中性假设,从而它是无用的、不能证实的。事实上,由于平均作用和媒质的对称性,所有差别都被拉平了,而且不管可能做什么假设,结果总是相同的。
1701107059
1701107060
在电理论和毛细现象理论中,也出现同样的情况。邻近的分子相互吸引和排斥。我们不需要知道按照什么定律;在我们看来,只要这种引力仅在小距离内才可察觉,只要分子是极多的,只要媒质是对称的就足够了,我们只要让大数定律起作用就行了。
1701107061
1701107062
在这里,基元现象的简单性再次藏匿在可观察现象的复杂性下面;但是,这种简单性本身只是表观的,它隐蔽着极其复杂的机制。
1701107063
1701107064
达到基元现象的最好手段显然是实验了。我们应当用实验设法解开自然界供给我们研究的一捆复杂的乱丝,仔细地研究尽可能多的孤立的要素。例如,自然界的白光可以借助棱镜分解为单色光,可以借助起偏振镜分解为偏振光。
1701107065
1701107066
不幸的是,这既非总是可能的,亦非总是充分的,有时心智要超过实验。我将只引证一个例子,这个例子经常强烈地震撼着我。
1701107067
1701107068
如果我分解白光,我将能够把光谱的一小部分孤立起来,但是这部分无论可能多么小,它总会保持一定的宽度。同样地,所谓单色光的自然光给我们一条十分窄的线,但是不管怎样,它并不是无限窄。可以设想,在用实验研究这些自然光的特性时,用越来越精细的光谱线做试验,最后便通过一个极限,于是可以说,我们成功地获悉了严格的单色光的性质。
1701107069
1701107070
这不可能是准确的。设从同一光源发出两束光线,我们先使它们在两个垂直平面上偏振,然后使它们返回到同一偏振面,再试图使它们发生干涉。如果光严格地是单色的,那么它们就会干涉。用我们的接近单色的光作实验,就没有干涉现象,无论谱线多么窄也不行。为了发生干涉,就必须使谱线比已知的最精细的谱线还要窄几百万倍。
1701107071
1701107072
可是在这里,我们被通过极限欺骗了。心智必须超过实验,如果能成功地做到这一点,那正是因为心智容许自己受简单性本能的指导。
1701107073
1701107074
知道基本事实能使我们用方程表达问题。此外只要通过组合,从这个方程演绎出能够观察和能够确认的复杂事实就行了。这就是所谓的积分,它是数学家的事务。
1701107075
1701107076
人们可能要问,在物理科学中,概括为什么如此迅速地采取数学形式呢?现在,理由是很容易看到的。这不仅因为我们具有用数字表示的定律;还因为可观察的现象是由大量的完全相似的基元现象叠加而成的。从而很自然地引入了微分方程。
1701107077
1701107078
每一个基元现象服从简单的定律还是不够的;所有这些组合在一起的现象必须服从相同的定律。唯有这样,数学的介入才会有用处;数学实际上教导我们把同类的东西与同类的东西组合起来,数学的目的在于了解组合的结果,不需要重新一个一个地组合。如果我们不得不数次重复同一运算,那么由于它通过一种归纳法预先告诉我们运算的结果,从而能使我们避免这种重复。在上面的关于数学推理的那一章中,我已经说明了这一点。
1701107079
1701107080
但是,就这一点而言,所有的运算必须是相似的。在相反的个例中,显然必须在实际上一个接一个地顺从做运算,而数学也就变得无用了。
1701107081
1701107082
可是,多亏物理学家所研究的物质的近似的均匀性,数学物理学才可能诞生。
1701107083
1701107084
在自然科学中,我们再也找不到这些条件:均匀性、远离部分的相对独立性、基本事实的简单性;这就是为什么博物学家被迫诉诸其他概括方法。
1701107085
1701107086
1701107087
1701107088
1701107090
科学与假设 第十章 近代物理学的理论
1701107091
1701107092
物理学理论的意义。外行人看到科学理论多么短命而备受冲击。在经过一些年代的繁荣兴旺之后,他们看到这些理论相继被抛弃了;他们看到废墟堆积在废墟之上;他们预见今天风靡一时的理论不久也会遭到同样的命运,因此他们得出结论说,这些理论是完全无用的。这就是他们所谓的科学破产。
1701107093
1701107094
他们的怀疑论是肤浅的;他们根本没有考虑科学理论的目的和作用;否则他们就会明白,这些废墟可能还对某些东西有好处。
1701107095
1701107096
菲涅耳曾把光归因于以太的运动,似乎没有什么理论比菲涅耳理论更牢固了。可是如今,人们却偏爱麦克斯韦理论。这意味着菲涅耳的工作是徒劳的吗?不,因为菲涅耳的目的不在于弄清楚,以太是否实际上存在,或者它是否由原子构成,这些原子实际上是否在这个或那个向指运动;他的目标是预言光学现象。
1701107097
1701107098
而且,菲涅耳理论在今天以及在麦克斯韦之前,总是容许做到这一点。微分方程总是为真;它们总是能够用同样的步骤来积分,而且这个积分的结果总是保持它们的值。
1701107099
1701107100
请人们不要说,我们这样做是把物理学理论仅仅化归为实用处方的角色;这些方程表示某些关系,如果方程依然为真,那正是因为这些关系保存着它们的实在。它们现在像那时一样告诉我们,在一些事物和另一些事物之间存在着如此这般的关系;只不过这种东西我们以前称为运动;现在我们却称其为电流。但是,这些名称仅仅是代替实在的客体的图像,自然界永远将实在的客体向我们隐藏着。这些实在的客体之间的真关系是我们能够得到的唯一实在,而唯一的条件是,在这些客体之间与在我们被迫用来代替它们的图像之间存在着相同的关系。如果我们知道这些关系,那么我们若认为用一种图像代替另一种图像是方便的,又有什么要紧的呢。
[
上一页 ]
[ :1.701107051e+09 ]
[
下一页 ]