1701107430
Ⅴ.原因概率。现在我们开始谈谈原因概率问题,从科学应用的观点来看,这是最重要的问题。例如,两个恒星在天球上十分接近。这种表观的接近仅仅是偶然性的结果吗?这些恒星虽然几乎在同一视线上,但它们处在与地球极其不同的距离、从而相互之间十分遥远吗?或者,这种表观的接近也许与实际的接近是一致的?这是原因概率的问题。
1701107431
1701107432
我首先想起,在迄今我们关注的结果概率的所有问题开始,我们总是必须做出或多或少被证明是合理的约定。在大多数个案中,如果结果在某种程度上不依赖于这个约定,这仅仅是因为某些假设容许我们先验地排除不连续函数,或者比如说,排除某些荒谬的约定。
1701107433
1701107434
当我们处理原因概率时,我们将会发现某些类似的东西。一个结果可以由原因A或原因B产生。该结果刚刚被观察到了。我们要问它由原因A产生的概率。这是后验的原因概率。但是,如果没有或多或少被证明是合理的约定预先告诉我,原因A开始起作用的先验的概率是多少,那么我就不能计算后验的原因概率;我意指对于某个没有观察到该结果的人而言的这个事件的概率。
1701107435
1701107436
为了说明得更清楚,我回到上面提到的玩纸牌游戏的例子。我的对手首先发牌,他翻出王。他是骗子的概率是多少?通常讲授的公式给出8/9,结果显然是相当令人惊奇的。如果我比较仔细地检查一下结果,那么我会看到,这个演算仿佛在我坐到桌旁之前就做过了,我已经认为在两次机会中有一次我的对手是不诚实的。这是一个荒谬的假设,因为在此种情况下我肯定不会和他玩了,这便说明了结论的荒谬性。
1701107437
1701107438
关于先验概率的约定是不合理的,这就是为什么后验概率演算把我引向不能容许的结果。我们看到这个预备约定的重要性。我甚至还想补充说,如果不做预备约定,后验概率问题便毫无意义。预备约定总是必须做出的,或者直截了当地做出,或者不言而喻地做出。
1701107439
1701107440
再举一个更有科学特点的例子。我想决定一个实验定律。当我了解这个定律时,它能够用曲线来描绘。我做了若干孤立的观察;其中每一个将用一点来表示。当我得到这些不同的点时,我在它们之间引一条曲线,尽可能使曲线靠近它们,可还是保持曲线的规则形状,没有角点,或者没有太急剧的弯曲,或者曲率半径没有突然的变化。在我看来,这个曲线将表示概然定律,我不仅假定它将告诉我在所观察到的值之间的中间函数值,而且假定它将给我比直接观察更精确的观察值。这就是我使曲线通过点的附近而不通过点本身的原因。
1701107441
1701107442
这里有原因概率的问题。结果是我记录的测量;这些结果取决于下述两个原因的组合:现象的真实定律和观察的误差。知道了结果,我们必须寻求现象服从这个或那个定律的概率以及观察受这个或那个误差影响的概率。于是,最概然定律对应于所画的曲线,而最概然的观察误差则由相应点与这个曲线的距离来表示。
1701107443
1701107444
但是,在任何观察之前,如果我没有形成某一定律的概率的先验观念以及我所面临的误差偶然性的先验观念,那么这个问题将毫无意义。
1701107445
1701107446
如果我的仪器是好的(而且我在做观察前已了解这一点),我将不容许我的曲线与表示初步测量的点偏离得太多。如果仪器不好,我可以使曲线离点稍远一些,以便得到弯曲较少的曲线;我将较多地牺牲规则性。
1701107447
1701107448
那么我为什么企图画一条没有曲折的曲线呢?这是因为,我先验地认为定律是用连续函数(或用其高阶导数是很小的函数)表示的,这种定律比不满足这些条件的定律更可能。没有这个信念,我们所谈的问题就没有意义;内插法就是不可能的;从有限数目的观察中无法推导出定律;科学便不会存在了。
1701107449
1701107450
50年前,物理学家认为,在其他情况相同时,简单的定律比复杂的定律更可能。他们甚至求助于这个原则来袒护马略特定律,反驳勒尼奥(Regnault)实验。今天,他们拒斥这个信念;可是,有多少次他们被迫像他们持有这个信念一样地去行动!不管情况怎样,这种倾向遗留下来的是对于连续性的信念,我们刚才看到,假如这个信念本身不得不消失的话,实验科学就变得不可能了。
1701107451
1701107452
Ⅵ.误差理论。我们就这样被导致谈误差理论,这个理论直接与原因概率问题相关。在这里,我们再次发现结果即若干不一致的观察,我们企图去推测原因,这些原因一方面是所测量的量的真值,另一方面是在每次孤立观察中所造成的误差。有必要计算每一个误差的后验可能量是多少,从而计算所测量的量的概值。
1701107453
1701107454
但是,正如我刚刚说明的,如果我们不先验地承认,也就是说,在所有观察之前不承认误差概率定律,那么我们就不可能知道如何着手进行这个演算。误差定律存在吗?
1701107455
1701107456
所有计算者承认的误差定律是高斯(Gauss)定律,它是用某一超越曲线表示的,该曲线以“钟形曲线”的名字而闻名。
1701107457
1701107458
不过,首先回想一下系统误差和偶然误差的经典区别是恰当的。如果我们用过长的米尺测量长度,我们将总是得到太小的数,而且测量几次也是无用的;这就是系统误差。即使我们用准确的米尺测量,但是我们也会犯错误;不过,我们有时错得多,有时错得少,当我们取多次测量的平均值时,则误差将趋于减小。这就是偶然误差。
1701107459
1701107460
显而易见,系统误差原来不能满足高斯定律;但是,偶然误差能满足吗?人们尝试做了大量的证明;几乎所有的证明都是粗制滥造的谬论。不管怎样,我们可以从下述假设出发证明高斯定律:所造成的误差是大量的部分误差和独立误差的结果;每一个部分误差是很小的,而且服从任何概率定律,只要正误差的概率与均等的负误差的概率相同。显然,这些条件常常能被满足,但并非总是如此,对于满足这些条件的误差来说,我们可以保留偶然误差的名称。
1701107461
1701107462
我们看到,最小二乘法并非在每一种个案中都是合理的;一般说来,物理学家比天文学家更怀疑它。无疑地,这是因为天文学家除了遇到与物理学家一样的系统误差以外,还必须与极重要的误差来源作斗争,这种误差来源完全是偶然的;我指的是大气波动。于是,听到物理学家和天文学家讨论观察方法是很奇怪的。物理学家使人们相信,一次好的测量比多次不好的测量更有价值,他们首先关心的是凭借预防最小的系统误差来消除误差,而天文学家对他说:“但是,你这样只能观察少数恒星;偶然误差将不会消失。”
1701107463
1701107464
我们应该得出什么结论呢?我们必须继续利用最小二乘法吗?我们必须识别。我们已消除了我们可以怀疑的一切系统误差;我们清楚地知道还有其他误差,不过我们无法把它们检查出来;我们必须下定决心,采用一个确定的数值,可以把它看做是概值;为此,显然最好的做法是应用高斯方法。我们只应用与主观概率有关的实际法则。在这里无需多说。
1701107465
1701107466
但是,我们希望更进一步,不仅肯定概值是这么多,而且肯定结果的概差是这么多。这是绝对不合理的;只有我们保证所有系统误差都被消除了,它才为真,但是我们对此绝对一无所知。我们有两个观察系列;应用最小二乘法则,我们发现,第一个系列的概差比第二个系列的概差小一倍。不过,第二个系列可以比第一个系列好,因为第一个系列也许受到很大的系统误差的影响。我们能够说的一切就是,第一个系列可能比第二个系列好,由于它的偶然误差较小,我们没有理由肯定一个系列的系统误差比另一个的大,我们关于这点的无知是绝对的。
1701107467
1701107468
Ⅶ.结论。在前文中,我提出了许多问题,其中还没有一个解决了。可是,我并不懊悔把它们写下来,因为它们也许会引起读者对这些棘手的疑问进行思考。
1701107469
1701107470
不管情况怎样,其中某些方面似乎妥善地建立起来了。为了着手进行任何概率演算,进而为了使这种演算有任何意义,就必须承认假设或总是具有某种程度任意性的约定是出发点。在选择这个约定时,我们只能以充足理由律为指导。不幸的是,这个原则是十分模糊的和十分灵活的,在我们刚刚做出的粗略审查中,我们看到它采取了许多不同的形式。我们最为经常遇到的形式是对于连续性的信念,这种信念很难用无可置疑的推理去辩护,但是若没有它,整个科学也许就不可能了。最后,概率演算可以富有成效地应用的问题,是结果独立于起初所做的假设的问题,只要这个假设满足连续性条件就行。
1701107471
1701107472
1701107473
1701107474
1701107476
科学与假设 第十二章 光学和电学
1701107477
1701107478
菲涅耳理论。在物理学的发展中,人们能够选择的最好例子〔1〕就是光理论以及它与电理论的关系。多亏菲涅耳,光学才成为物理学中得到最充分发展的一部分;所谓的波动说形成了确实使我们心满意足的一个整体。然而,我们不必向它要求它不能够给予我们的东西。
1701107479
[
上一页 ]
[ :1.70110743e+09 ]
[
下一页 ]