1701107451
1701107452
Ⅵ.误差理论。我们就这样被导致谈误差理论,这个理论直接与原因概率问题相关。在这里,我们再次发现结果即若干不一致的观察,我们企图去推测原因,这些原因一方面是所测量的量的真值,另一方面是在每次孤立观察中所造成的误差。有必要计算每一个误差的后验可能量是多少,从而计算所测量的量的概值。
1701107453
1701107454
但是,正如我刚刚说明的,如果我们不先验地承认,也就是说,在所有观察之前不承认误差概率定律,那么我们就不可能知道如何着手进行这个演算。误差定律存在吗?
1701107455
1701107456
所有计算者承认的误差定律是高斯(Gauss)定律,它是用某一超越曲线表示的,该曲线以“钟形曲线”的名字而闻名。
1701107457
1701107458
不过,首先回想一下系统误差和偶然误差的经典区别是恰当的。如果我们用过长的米尺测量长度,我们将总是得到太小的数,而且测量几次也是无用的;这就是系统误差。即使我们用准确的米尺测量,但是我们也会犯错误;不过,我们有时错得多,有时错得少,当我们取多次测量的平均值时,则误差将趋于减小。这就是偶然误差。
1701107459
1701107460
显而易见,系统误差原来不能满足高斯定律;但是,偶然误差能满足吗?人们尝试做了大量的证明;几乎所有的证明都是粗制滥造的谬论。不管怎样,我们可以从下述假设出发证明高斯定律:所造成的误差是大量的部分误差和独立误差的结果;每一个部分误差是很小的,而且服从任何概率定律,只要正误差的概率与均等的负误差的概率相同。显然,这些条件常常能被满足,但并非总是如此,对于满足这些条件的误差来说,我们可以保留偶然误差的名称。
1701107461
1701107462
我们看到,最小二乘法并非在每一种个案中都是合理的;一般说来,物理学家比天文学家更怀疑它。无疑地,这是因为天文学家除了遇到与物理学家一样的系统误差以外,还必须与极重要的误差来源作斗争,这种误差来源完全是偶然的;我指的是大气波动。于是,听到物理学家和天文学家讨论观察方法是很奇怪的。物理学家使人们相信,一次好的测量比多次不好的测量更有价值,他们首先关心的是凭借预防最小的系统误差来消除误差,而天文学家对他说:“但是,你这样只能观察少数恒星;偶然误差将不会消失。”
1701107463
1701107464
我们应该得出什么结论呢?我们必须继续利用最小二乘法吗?我们必须识别。我们已消除了我们可以怀疑的一切系统误差;我们清楚地知道还有其他误差,不过我们无法把它们检查出来;我们必须下定决心,采用一个确定的数值,可以把它看做是概值;为此,显然最好的做法是应用高斯方法。我们只应用与主观概率有关的实际法则。在这里无需多说。
1701107465
1701107466
但是,我们希望更进一步,不仅肯定概值是这么多,而且肯定结果的概差是这么多。这是绝对不合理的;只有我们保证所有系统误差都被消除了,它才为真,但是我们对此绝对一无所知。我们有两个观察系列;应用最小二乘法则,我们发现,第一个系列的概差比第二个系列的概差小一倍。不过,第二个系列可以比第一个系列好,因为第一个系列也许受到很大的系统误差的影响。我们能够说的一切就是,第一个系列可能比第二个系列好,由于它的偶然误差较小,我们没有理由肯定一个系列的系统误差比另一个的大,我们关于这点的无知是绝对的。
1701107467
1701107468
Ⅶ.结论。在前文中,我提出了许多问题,其中还没有一个解决了。可是,我并不懊悔把它们写下来,因为它们也许会引起读者对这些棘手的疑问进行思考。
1701107469
1701107470
不管情况怎样,其中某些方面似乎妥善地建立起来了。为了着手进行任何概率演算,进而为了使这种演算有任何意义,就必须承认假设或总是具有某种程度任意性的约定是出发点。在选择这个约定时,我们只能以充足理由律为指导。不幸的是,这个原则是十分模糊的和十分灵活的,在我们刚刚做出的粗略审查中,我们看到它采取了许多不同的形式。我们最为经常遇到的形式是对于连续性的信念,这种信念很难用无可置疑的推理去辩护,但是若没有它,整个科学也许就不可能了。最后,概率演算可以富有成效地应用的问题,是结果独立于起初所做的假设的问题,只要这个假设满足连续性条件就行。
1701107471
1701107472
1701107473
1701107474
1701107476
科学与假设 第十二章 光学和电学
1701107477
1701107478
菲涅耳理论。在物理学的发展中,人们能够选择的最好例子〔1〕就是光理论以及它与电理论的关系。多亏菲涅耳,光学才成为物理学中得到最充分发展的一部分;所谓的波动说形成了确实使我们心满意足的一个整体。然而,我们不必向它要求它不能够给予我们的东西。
1701107479
1701107480
数学理论的目标并不在于向我们揭示事物的真实本性;这是没有道理的要求。它们的唯一目的是协调实验向我们揭示出的物理学定律,但是若没有数学的帮助,我们甚至不能陈述这些定律。
1701107481
1701107482
以太是否真正存在,并没有什么关系;这是形而上学家的事务。对我们来说,主要的事情是,一切都像以太存在那样发生着,这个假设对于说明现象是方便的。归根结底,我们有任何其他理由相信物质客体的存在吗?那也仅仅是一个方便的假设;只是这个假设永远是方便的,而以太在某一天无疑却要被作为无用的东西抛弃。然而,即使在那一天,光学定律以及用解析法变换它们的方程依然为真,至少是一级近似。于是,研究把这一切方程联合起来的学说将总是有用的。
1701107483
1701107484
波动说建立在分子假设的基础上。对于那些以为他们如此发现了在定律之下的原因的人来说,这是有利条件。对于其他人而言,这却是怀疑的理由。但是,在我看来,这种怀疑像前者的幻想一样,似乎都是不可靠的。
1701107485
1701107486
这些假设只起了次要的作用。人们可以牺牲它们。人们通常没有这样做,因为那样会使说明失去明晰性,但是,这是唯一的理由。
1701107487
1701107488
事实上,如果我们较为仔细地去观察,那么就会看到,人们只从分子假设借用了两件事:能量守恒原理和方程的线性形式,这是小运动的普遍定律,犹如一切小变化的普遍定律。
1701107489
1701107490
这说明了,当我们采纳光的电磁理论时,菲涅耳的大多数结论为什么依然不变。
1701107491
1701107492
麦克斯韦理论。我们知道,麦克斯韦用密切的结合物把直到当时还完全互不相干的物理学的两部分——光学和电学——联系起来了。由于菲涅耳的光学这样融合到更宽广的整体中、融合到更高级的和谐中,因而它依然是充满活力的。它的各部分继续有效,各部分的相互关系还是相同的。唯有我们用来描述这些关系的语言变化了;另一方面,在光学的不同部分和电学领域之间,麦克斯韦向我们揭示出以前未曾料到的其他关系。
1701107493
1701107494
当法国读者第一次打开麦克斯韦的书时,便觉得不大自在,甚至在起初,常常是怀疑与赞美搀和在一起。只有在经过长期了解、并花费了许多努力之后,这种情感才会消失。甚至还有一些著名人物永远不会摆脱这种感觉。
1701107495
1701107496
为什么我们这样难以适应这位英国科学家的观念呢?无疑地,这是因为大多数有知识的法国人所受的教育使他们预先倾向于欣赏精确性和逻辑,把它们抬高到其他一切特性之上。
1701107497
1701107498
在这方面,古老的数学物理学理论完全能使我们满意。我们所有的大师,从拉普拉斯到柯西(Cauchy),都是在同一道路上行进的。从明确陈述的假设开始,他们演绎出具有数学严格性的结论,然后把它们与实验比较。他们的目的似乎是把与天体力学一样的精确性给予物理学的每一个分支。
1701107499
1701107500
对于习惯于赞美这样的模型的心智来说,要使他对一个理论中意是很难的。他不仅不容许出现丝毫矛盾,而且要求各部分在逻辑上相互关联,要求不同假设的数目减到最小限度。
[
上一页 ]
[ :1.701107451e+09 ]
[
下一页 ]