打字猴:1.7015503e+09
1701550300 这时,叙述者因为有公务要急着赶往银行,只好作别这快乐的一对,直到几个月后才又经过这个地方。当他又经过时,阿契利斯还坐在极有耐力的乌龟背上,在他的笔记本上奋笔写着,那本子似乎已经快写满了。乌龟说:“你写下那最后一步了吗?我要没数错的话,那是第1001条。还有好几百万条等着呢。”
1701550301
1701550302 这个悖论的解决方法当然是,没有一个推导系统会一直因循明确的规则。在某一点上,系统必须像杰瑞·鲁宾(Jerry Rubin)所说的,做就是了[5]。也就是说,规则只需被系统反射性地、强力操作执行即可,无须再提更多的问题。在那一点上,系统如果像一台机器那样运行,将不会去遵循规则,而是会服从物理学定律。类似地,如果表征是由“小幽灵(后台程序)”来读写的(用符号来代替符号的规则),“小幽灵(后台程序)”之中又有更小的(和更笨的)“小幽灵(后台程序)”,最终你得向“捉鬼敢死队”求救了,并用机器来取代最小最笨的“小幽灵(后台程序)”——对于人和动物,机器是用神经元制造的,也就是神经网络。我们来看看对于心智如何工作的图景,是如何建立在大脑如何工作的简单想法基础上的。
1701550303
1701550304 最初的线索来自数学家沃伦·迈卡尔洛克(Warren McCulloch)和沃尔特·匹茨(Walter Pitts),他们写了一些关于相互连接的神经元的“神经-逻辑”性质。神经元很复杂,仍不为人所完全理解,但迈卡尔洛克和匹茨以及大多数神经网络的建模者已经识别出神经元所做的最重要的一件事。事实上,神经元累积到一定数量,然后将总数与一个阈限相比较,来确定是否超过这个阈限。这就是对神经元所做的概念性描述;相应的物理描述是,一个触发的神经元其激活程度在不断变化,它的激活水平受到来自轴突的激活水平的影响,而轴突从附着在突触上的其他神经元一直延伸到本神经元的树突(输入结构)。突触具有的电量从正(兴奋的)到零,再到负(抑制的)。每个到来的轴突的激活水平再乘上突触的电量。神经元将这些到来的激活水平累加到一起;如果总数超过了阈限,神经元就会变得更活跃,继而向任何与它相连的神经元发送一个信号。尽管神经元总是处在激活状态,而到来的信号只是使它的激活水平变化为更快或更慢的可察觉速率,但有时将它们描述为关(静息率)或开(动作率)还是比较方便。
1701550305
1701550306 迈卡尔洛克和匹茨证明了,这些模型神经元是如何连接在一起组成逻辑门的。逻辑门执行了最基本的关系“且”“或”“非”,这些关系构成了简单推理的基础。如果A为真且B为真,那么“A且B”为真(概念上的)。如果它的两个输入都是开的状态,一个和门(物理上的)会产出一个输出。为了从模型神经元中做出一个且门,要将输出单位的阈限调至比每个输入分量大但小于它们的和,如图2-2左图中的微型网络。如果A为真或B为真,那么“A或B”为真(概念上的)。如果两个输入中任意一个为开的状态,一个或门(物理上的)产出一个输出。要做一个或门,将阈限设定为小于每个输入分量,如图2-2中间的微型网络所示。最后,如果A为假,“非A”(概念上的)为真,反之亦然。一个非门(物理上的)当它没收到输入时,会产出一个输出;反之亦然。要做一个非门,将阈值设定为零,这样当没收到任何输入时,神经元会触发;令输入分量为负,这样输入的信号就会抑制神经元,正如图2-2右图中的微型网络所示。
1701550307
1701550308
1701550309
1701550310
1701550311 图2-2
1701550312
1701550313 我们假设,每个模型神经元都表征一个简单的命题。微型网络可以连接在一起,其中一个的输出供应了另一个的输入,这样就可以评估一个复杂命题的真伪了。例如,一个神经网络能够评估命题{[(X咀嚼它反刍的食物)和(X有偶蹄)]或[(X有鳍)且(X有鳞)]},概括什么样的动物才清洁可食[6]。事实上,如果一个模型神经元网络被连接到某种可延伸的内存记忆(比如在一个橡皮印章和一块橡皮下滚动的一卷纸)时,它就成了一台图灵机,一台全速运转的计算机。
1701550314
1701550315 但是,在逻辑门中表征命题或组成命题的概念是完全不现实的,无论这些逻辑门是用神经元还是用半导体做的。问题在于,每个概念或命题都必需事先作为分开的单位并连接好。而计算机和大脑都是将概念表征为对于几组单位的活动模式。一个简单的例子就是,普通的字节代表着你计算机中的一个字母数字字符。字母B的表征为01000010,其中的数字(比特)对应到排列成行的小小硅片上。第二和第七小片充上了电荷,对应于1;其他小片没充电荷,对应于0。一个字节也可以用模型神经元来做,识别B模式的电路可以做成图2-3这样的简单神经网络:
1701550316
1701550317
1701550318
1701550319
1701550320 图2-3
1701550321
1701550322 你可以想象,这个网络是组成一个“小幽灵(后台程序)”的一部分。如果模型神经元的最底下一行与短期记忆相连,最上面的将检测短期记忆中是否包含一个符号B的情况。在图2-4有一个“小幽灵(后台程序)”局部网络,它将符号B写入内存记忆。
1701550323
1701550324
1701550325
1701550326
1701550327 图2-4
1701550328
1701550329 我们正在用模型神经元构建一个传统数字计算机,不过让我们略微调整一下方向,做一台更具生物形态的计算机。首先,我们可以用模型神经元来执行模糊逻辑而不是经典逻辑。在许多情况下,人们对某事是否正确并没有“全部或者没有”的十足把握。一件东西可以是某个类别中比较好或比较差的一个例子,而不是要么属于要么不属于。以类别“蔬菜”为例,绝大多数人同意,芹菜是彻底的蔬菜而大蒜是个一般般的例子。如果在里根政府鼓吹简化学校午餐项目时,我们相信政府的话,那么就连番茄酱也是一种蔬菜了——尽管在遭到如潮的批评后,里根政府承认那不是一个很好的蔬菜。从概念上讲,我们避开认为某种东西是或不是蔬菜的观点,而是说这东西会是比较好还是比较差的一个蔬菜的例子。从物理上讲,我们不再坚持一个表征“蔬菜性”的单位要么开要么关,而是允许它有一个值的范围,从0(如石头)到0.1(如番茄酱),再到0.4(如大蒜),最后到1(如芹菜)。
1701550330
1701550331 我们也可以取消任意代码,如果它们将概念与一串没有意义的比特建立关联。每个比特必须要代表什么东西才能存在下去。一个比特可能代表绿色,另一个代表有叶子,还有一个代表咬起来嘎吱响,等等。所有这些蔬菜性的单位都以很小的权重连接到蔬菜这个单位本身。其他代表蔬菜没有的性质的单位(如“磁性”或“移动性”),可以以负权重与蔬菜单位相连。从概念上讲,一个东西具有的蔬菜性质越多,它就是一个更好的蔬菜的例子。从物理上讲,越多的蔬菜性质单位被开启,蔬菜单位的激活水平就越高。
1701550332
1701550333 一旦一个网络被允许启动,它就能代表证据的可信程度和实践的概率,也能做出统计决策。假设一个网络的每个单位都代表一条证据显示“是男管家”(如刀子上的指纹,给受害者妻子的情书,等等),假设顶端的节点代表结论为“是男管家干的”。从概念上讲,显示可能“是男管家干的”的线索越多,我们推测“是男管家干的”的可能性就越大。从物理上讲,越多的线索单位被开启,结论单位就被激活得越多。我们可以通过将结论单位设计为以不同的方式整合输入,来在网络中执行不同的统计程序。例如,结论单位可以是一个阈限单位,就像那些开闭式逻辑门中的一样;那些单位只有在证据的权重超过一个临界值时(比如说,“排除合理怀疑”),才执行政策做出决定。或者结论单位能够逐渐地增加其活跃度;它的置信度会随着最初线索的逐渐渗入而慢慢递增,积累得越来越多,然后在收益递减的一点趋于稳定。这是神经网络建模者喜欢使用的两种模型。
1701550334
1701550335
1701550336
1701550337
1701550338 图2-5
1701550339
1701550340 我们甚至可以再大胆些,从神经元比硅芯片的连接更为方便这一事实中获得启发。为什么不把每个单位都与其他所有单位连接在一起呢?这样的网络所包含的将不只是“绿色”预测“蔬菜性”和“咬起来嘎吱响”预测“蔬菜性”这样的知识,而且还包括“绿色”预测“咬起来嘎吱响”,“咬起来嘎吱响”预测“有叶子”,“绿色”预测“缺乏移动性”,等等(见图2-6)。
1701550341
1701550342
1701550343
1701550344
1701550345 图2-6
1701550346
1701550347 随着这一变化,有趣的事情就开始发生了。网络开始产生类似于人类思维的过程,而这是连接疏松的网络做不到的。因为这个原因,心理学家和人工智能研究人员已经在使用“所有连接所有”式网络来对许多简单模式识别的例子建立模型。他们建立的网络中,同样的线条出现在不同的字母中,同样的字母出现在不同的单词中,同样的身体部分出现在不同的动物身上,同样的家具部件出现在不同的房间中。顶端的节点往往已被摒弃掉,而只计算各性质之间的相关度。这些网络,有时被称为自动协关器,它有5个典型的特征:
1701550348
1701550349 首先,自动协关器是一个重构的、内容寻址的记忆内存。在商业计算机中,比特本身是没有意义的,它们组成的字节有着任意的地址,就像街道中的房子一样,其地址与内容没有任何关系。根据地址获得内存记忆的位置,然后确定一个模式是否储藏在记忆的某个地方,需要你去那里寻找(或利用聪明的快捷方式)。而在内容寻址的内存记忆中,确定某件东西自动会照亮记忆中包含了一个那东西复制品的位置。因为在自动协关器中表征一件东西是通过开启代表其性质的单位的(在芹菜的例子中,绿色、有叶子,等等),而这些单位都彼此很紧密地连接着,所以被激活的单位会相互强化,过了几轮之后整个网络就都传遍了激活的信号,所有与这件东西相关的单位都将被锁止在“开”的位置。这表明这件东西已经被识别出了。事实上,一个自动协关器的连接电储能够支持许多组分量,不只是一个,所以它能够一次储存许多件东西。
[ 上一页 ]  [ :1.7015503e+09 ]  [ 下一页 ]