1701550450
1701550451
记者们说,“狗咬人不是新闻,人咬狗才是新闻”。心理表征的组成性使得我们能够理解新闻。我们可以具有疯狂的、奇妙的新想法,无论这想法多么荒诞不经。奶牛跳过月球;格林奇偷走了圣诞节;宇宙源自一个大爆炸;外星生物降临哈佛;迈克尔·杰克逊娶了猫王的女儿。感谢数学中的组合理论,我们永远也不会缺少新闻。还有百万万亿个想法足够我们去想呢!
1701550452
1701550453
你可能觉得,将组成性问题放到神经网络中是件很容易的事情:只要开启“婴儿”“吃”“毛虫”的单位就行了。但如果那就是你的心智所做的,你将会感到一头雾水:究竟是婴儿吃了毛虫,毛虫吃了婴儿,还是婴儿和毛虫吃了。概念必须被分配给角色(逻辑学家们称之为“参数”):谁是吃东西的,谁是被吃的。
1701550454
1701550455
那么,也许有人可以给每个概念和角色的组合分配一个结点。那就有了一个“婴儿吃毛虫”结点和一个“毛虫吃婴儿”结点。有人可能会想,既然大脑包含了海量的神经元,为什么不那么做呢?不这么做的原因是,海量和真正海量是两个概念。组合的数目会随着可允许的大小呈指数增长,这种组合数量的爆炸式增长远超过了我们对脑容量最大胆的猜想。据传说,宰相西萨·班·达依尔因其发明了国际象棋向印度舍罕王索要微薄的奖赏。他请赏的只是将一粒小麦放在国际象棋盘的第一个方格里,两粒小麦放在第二个方格里,四粒放在第三个,以此类推。还远没到第64个方格时,国王就发现,他已经无意中将他整个王国所有的小麦都送出去了。奖赏总计达四万亿蒲式耳,相当于全世界2000年的小麦总产量。与之类似,思维的组合数目会远远超过脑中神经元的数量。如果每句含义都要有它自己的神经元,那么一亿兆个句子含义怎么压缩也塞不到拥有1000亿个神经元的大脑里去。
1701550456
1701550457
即使能够容得下,一个复杂思维也一定不是一个神经元对一个思维那样整体储存的。原因在于,我们的思维是彼此相关的方式。假设每个思维都有它自己的单位,就会有不同的单位分别对应于婴儿吃小毛虫,小毛虫吃婴儿,小鸡吃小毛虫,小鸡吃婴儿,小毛虫吃小鸡,婴儿看见小毛虫,小毛虫看见婴儿,小鸡看见小毛虫,等等。单位必须被分配给所有这些以及更多的思维;任何能想到“婴儿看到小鸡”的人也能够想到“小鸡看到婴儿”。但这种思维对应单位的储存有些可疑之处,它的匹配方式纯粹出于巧合。我们不断地有婴儿吃、毛虫吃、婴儿看、虫子看,等等。所有的思维完美地对应到一个巨大矩阵的各行、列、阶、超行、超列以及超阶。但如果思维是一个各个独立单位的大集合,而这些单位代表的同样也是一大堆彼此割裂、毫无关系的仿真陈述,那么这种惊人的模式就令人难以理解了。当自然交给我们可以合适地放进一个长方形分类储物架的物体时,它是在告诉我们,这些物体一定是由那些对应到各行各列的更小部件所组成的。这就是元素周期表如何引导了人们对原子结构的理解的原因。出于类似的原因,我们可以得出结论,我们思维的经纬线就是组成它们的概念。思维来自概念的组装,概念不是作为整体而储存的。
1701550458
1701550459
对于联结浆糊理论而言,组合性有些出乎意料地复杂。所有表面明显的把戏都成为不适当的半吊子测量标准。假定我们为每个单位分配一个概念和角色的组合,也许一个单位代表婴儿-吃,另一个代表小毛虫-被吃;或者可能一个代表婴儿-做-一些事,另一个代表小毛虫-有些东西-被-(做)。这样就大量减少了组合的数量——但代价是增加了“谁对谁做了什么”的疑惑。“卷毛狗吃小毛虫时,婴儿在吃鸡肉”的思维会与“卷毛狗吃小鸡时,婴儿在吃小毛虫”的思维混淆。问题在于,婴儿-吃的单位并没说吃什么,小毛虫-被吃的单位也没说谁吃了它。
1701550460
1701550461
向正确方向迈出的一步是,在硬件中构建概念(婴儿、小毛虫等)与它们扮演角色(执行者、被执行对象等)的区分。假设我们确定好各自分开的单位组,一组表示执行者的角色,一组表示行为,一组表示被执行对象。要表征一个命题,每组单位都要装满正在扮演角色的概念模式,这些概念是由另一个分开的概念储存内存那里调入的。如果我们将每一个结点都彼此相连接,我们就有了一个命题的自动协关器,它能够具备少量的组合思维能力。我们可以储存“婴儿吃小毛虫”,当任意两个部分作为问题呈现时(比方说,“婴儿”和“毛虫”,表示问题“婴儿和毛虫的关系是什么”),网络会通过开启第三个部分的单位而完成其模式(在此例中,“吃”。见图2-12)。
1701550462
1701550463
1701550464
1701550465
1701550466
图2-12
1701550467
1701550468
是这样的吗?可惜不是。我们来看看这些思维:
1701550469
1701550470
婴儿 等同于 婴儿
1701550471
1701550472
婴儿 不同于 毛虫
1701550473
1701550474
毛虫 不同于 婴儿
1701550475
1701550476
毛虫 等同于 毛虫
1701550477
1701550478
如果一组连接权重允许第一糟的“婴儿”和中间槽的“等同于”开启第三槽的“婴儿”;同时允许“婴儿”和“不同于”开启“毛虫”;同时还允许“毛虫”和“不同于”开启“婴儿”,那么这组连接权重绝不会再允许“毛虫”和“等同于”开启“毛虫”。这是一个改头换面的抑或问题。如果“婴儿-于-婴儿”和“婴儿-等同于”的连接足够强大的话,它们会开启“婴儿”以回应“婴儿等同于”(这是好的),但它们也会开启“婴儿”以回应“婴儿不同于”(这不好)和“毛虫等同于”(也不好)。无论你怎样调整权重,你也无法找到能够满足所有4句话的连接组。既然任何人都能毫无疑问地理解这4句话,那么人类心智一定表征了比一组“概念-到-概念”或“概念-到-角色”关联更为复杂的命题。心智需要一个对命题本身的表征。在本例中,模型需要一个额外单位层——更确切地讲,一个专供表征整个命题,而与概念及其角色相分离的层级。图2-13以简化的形式展示了杰欧弗瑞·欣顿修订的一个能处理这些句子的模型。
1701550479
1701550480
1701550481
1701550482
1701550483
图2-13
1701550484
1701550485
储存“命题”单位的记忆是以任意模式开启的,有点像标志完整思维的序列数字。它就像一座将每个命题中的概念都容纳到其相应槽中的超级架构。请注意,这种网络架构是在多么严密地执行着标准的、像语言一样的心语啊!还有其他一些组成性网络的提议,不像这样具有明显的模拟性,但所有的提议都必须有一些专门设计的部分来将概念与其角色区分开来,并将每个概念与其各自角色适当地结合起来。还是需要偷偷借来诸如谓项、中项和命题等逻辑要素,以及处理它们的计算工具,才能得到一个模型,来做类似心智一样的事情;仅靠关联这些东西本身是不够的。
1701550486
1701550487
另一个你或许从没意识到的心理禀赋被称为量化或变量约束。它源自个体性与组成性的结合。我们的组成性思维往往是关于个体的,而且个体如何与思维的各个部分相联系各不相同。“某个婴儿吃某个毛虫”的想法与“某个婴儿总是吃一般毛虫”的想法是不同的,与一般意义上的“婴儿吃毛虫”的想法也不一样。有一种笑话,其幽默之处需要听者理解那种不同之处。“Every forty-five seconds someone in the United States sustains a head injury(每45秒钟美国就有人头部受到伤害。)”“我的天,可怜的家伙!”(someone可理解为“有人”,也可理解为“某人”)。当我们听到“Hildegard wants to marry a man with big muscles”时,我们不知道究竟她是用她的男性般的气概发出召唤呢,还是她只是满怀希冀地在体育馆里游荡。亚伯拉罕·林肯说:“你可以在某些时候愚弄所有人;你甚至可能永远愚弄某些人;但你不可能永远愚弄所有人。”(You may fool all the people some of the time;you can even fool some of the people all the time;but you can’t fool all of the people all the time.)如果没有计算量化的能力,我们就不可能理解他说的这句话的含义。
1701550488
1701550489
在这些例子中,我们有几个句子,或者对一个语义含混的句子有几种理解方式,其中相同的概念扮演着相同的角色,但整体意思则完全不同。仅仅将概念与它们的角色连在一起是不够的。逻辑学家用变量和限量词来区分它们。一个变量是指像x或y一样保持位置的符号,它代表着不同命题中或一个命题不同部分中的同一个实体。一个限量词是一个符号,它可以表达“存在着某个x,它……”,且“对于所有的x,……是真实的”。这样,一个想法可以体现在一个命题中,构成这个命题的符号表示了概念、角色、限量词和变量,所有的都予以精确地排序并加括号分类。例如,比较“每45秒钟{就有一个X[受伤]}”和“有一个X{每45秒钟[就会受伤]}”。我们的心语肯定也拥有可以做类似事情的工具。但目前为止,我们尚没有线索了解在一个关联网络中,这是如何做到的。
1701550490
1701550491
一个命题不仅可以是关于一个个体的,它自身必须被视为一种个体,这就引发了另一个问题。联结浆糊的力量来自单个一组单位中添加的模式。不幸的是,这可能产生怪异的四不像或是建一个两头都落空的网络。对于联结浆糊,这是无处不在的怪物的一部分,被称为干扰或串扰。
1701550492
1701550493
这有两个例子。心理学家尼尔·科罕(Neal Cohen)和迈克尔·迈克劳斯基(Michael McCloskey)训练一个网络学习两个数的加法。他们起初训练它把“1”加到其他数上:当输入“1”和“3”时,网络学会输出“4”,诸如此类。然后他们训练它把“2”加到所有其他数上。不幸的是,这个加2的问题将联结权重提升到加2为最优的值,因为网络没有富余的硬件来设定如何加1的知识,它竟将如何加1忘掉了!这种效应被称为“灾难性遗忘”,因为它不像日常生活的轻度遗忘。另一个例子是麦克莱兰德和他的同事阿兰·川本(Alan Kawamoto)设计的网络,将含义分配给语义含混的句子。例如,“A bat broke the window”的意思可以是一根棒球棒(bat)被扔到窗户上,也可以是一只长翅膀的哺乳动物(蝙蝠:bat)撞到窗户上。而下面这个解释则是人类得不出来的:一个长翅膀的哺乳动物用一根棒球棒打碎了窗户!
1701550494
1701550495
正如任何其他工具一样,令联结浆糊对某些事有效的特点,也令它对另一些事无效。网络概括的能力来自于它密集的交互联结性和它输入的叠加重合。但如果你是一个单位,有几千个其他单位在你耳边聒噪,还被一浪接一浪的输入所蹂躏,这并不总是一件乐事。经常是不同的信息组块被分开打包和存储,而不是随意混在一起。一种这样做的方式是给每一个命题分配它自己的存储槽和地址——这再显示了并不是计算机设计的所有方面都可以被草率归结为硅的好奇心。毕竟设计计算机不是来用作室内加热器,设计它是为了以一种对人类使用者有意义的方式来处理信息。
1701550496
1701550497
心理学家戴维·舍莉(David Sherry)和丹·夏克特(Dan Schacter)将这种推理推得更远。他们注意到,对于内存记忆系统不同的工程设计要求往往是目标交叉的。他们辩称,作为回应,自然选择给了有机体专门化的记忆系统。每个系统都有一个优化的计算架构专门适合于动物心智必须完成的一个任务的要求。例如,贮藏种子以备收成欠佳日子里食用的鸟类进化出了一种对于隐藏地点的大容量记忆(以星鸦为例,它可记忆10000个地方)。雄鸟歌唱吸引雌鸟,或者恫吓其他雄鸟的鸟类进化出对于歌声的大容量记忆(以夜莺为例,它可记忆200种歌声)。对于储藏地和歌声的记忆是位于不同的脑部结构,并且有着不同的神经元连接模式。我们人类对于记忆系统同时有着两种非常不同的要求。我们要记住谁在什么时间、什么地点、为什么对谁做了什么这种独特场景,这需要在每个场景都标记上时间、日期和一个序列号。但我们还必须推断出关于人们如何工作和世界如何运转的一般性知识。舍莉和夏克特提出的观点是:自然对每种要求分别赋予了我们一种记忆系统:一种“情景式”或自传体式记忆,另一种是“语义式”或一般性知识的记忆,心理学家恩德尔·托尔文(Endel Tulving)最早提出了这种区分。
1701550498
1701550499
思维成倍增加到真正的天文数字的把戏不是将概念插槽分配给三四个角色,而是一种被称为递归的心智能力。为每个角色安排固定一组单位是不够的。我们人类可以将一整个命题放到一个更大的命题中,赋予它一个角色。然后我们可以将这个更大的命题嵌套到一个还要大的命题中,这样创造一种命题中有命题的层级式树形结构。不仅这个婴儿吃毛虫,而且父亲看见这个婴儿吃毛虫,我想知道父亲是否看见这个婴儿吃毛虫,父亲知道我想知道他是否看见这个婴儿吃毛虫,以及我能猜到父亲知道我想知道他是否看见这个婴儿吃毛虫,等等。正如给一个数字加1的能力是一种产生一组无限多的数的能力,将一个命题嵌套到另一个命题中的能力,也是一种增加了无限多思维的能力。
[
上一页 ]
[ :1.70155045e+09 ]
[
下一页 ]