1701550400
输入与输出之间两个隐藏的单位计算了有用的中间产品。左边的这个计算了简单的情况“A或B”,从而激活了输出结点。右边这个计算繁复的情况“A且B”抑制了输出结点。输出结点可以只计算“(A或B)而不是(A且B)”,这对于它虚弱的力量来说也是力所能及的。要注意,即使是在用模型神经元构建最简单“小幽灵(后台程序)”的微观水平,内部表征也是必不可少的;仅仅刺激-反应的连接是不够的。
1701550401
1701550402
还有更好的,一个隐含层网络经过训练,能够运用一个更加新式的感知器学习程序来确定自己的权重。就像以前一样,老师将每个输入的正确输出都提供给网络,由网络来上下调整连接的权重,试着减少差异。但这提出了一个感知器无须担心的问题:如何将连接从输入单位调整到隐含单位。这是一个问题,因为老师又读不出心智,他无从知道封藏在网络内部的隐含单位的“正确”状态。心理学家戴维·鲁梅尔哈特(David Rumelhart)、杰欧弗瑞·欣顿(Geoffrey Hinton)和罗纳德·威廉姆斯(Ronald Williams)找到一个聪明的解决方法。输出单位对每个隐含单位反向传播了一个信号,代表着隐含单位对其所连接的所有输出单位的误差总和(“你传递了太多的激活”或者“你传递了太少的激活”,以及多多少或少多少)。这个信号可以作为代理教学信号用来调整隐含层的输入。从输入层到每个隐含层的连接都能够被上下推动,来减少隐含层在给定当前输入模式的条件下调整过量或不足的倾向。这个程序被称为“误差反向传播”,简称为“反向传播”,可以被后向迭代至无数层。
1701550403
1701550404
我们已经到达了许多心理学家看作是神经网络建模者的艺术的高度。在某种方式上,我们已经兜了一圈又回到原点,因为一个隐含层网络就像是麦卡尔洛克和匹茨对他们的神经逻辑计算机所提出的逻辑门的任意路线图。概念上讲,隐含层网络是将一组或对或错的命题组合成一个由多个“和”“或”及“非”连接在一起的复杂逻辑函数的一种方式,这种组合是通过两个扭转而成的。其一为值可以是连续的而不是或开启或关闭,所以它们可以表征一些陈述的正确程度或真实的概率,而不是只能处理完全对或完全错的陈述。第二个扭转是网络在许多情况下能够被训练得通过提供输入和它们正确的输出而采用适当的权重。位于这两个扭转上面的是一种态度:从脑中神经元之间的许多连接获得启发,并对构成网络的门和连接数目的天文数字无所愧疚。这种道德观使一个人能够设计出计算许多概率的网络,因而也是利用了外部世界特征之间的统计冗余性的网络。而这反过来又使得神经网络能够从一个输入概括到类似的输入而无须更多训练,只要这个问题是类似的输入产生类似的输出。
1701550405
1701550406
这几个观点是关于我们最小的“小幽灵(后台程序)”及其公告板作为模糊的神经机器如何运作的。这些观点起到一个桥梁的作用,到现在这桥还有点摇晃,它们的解释之路始于概念领域(祖母的直觉心理学以及它背后的各种知识、逻辑和概率理论),延续到规则和表征,最终抵达真实的神经元。神经网络还带来了一些令人愉快的惊喜。在解开心智软件时,最后我们可能会只使用蠢到足以用机器取代的“小幽灵(后台程序)”。如果我们似乎需要聪明点的“小幽灵(后台程序)”,有人就会弄明白怎样用更蠢笨的“小幽灵(后台程序)”来做出这些聪明的来。这一切都发展得太快了,而且有时发展得有所不同,比如当从下至上研究神经元的神经网络建模者能够构建一些“小幽灵(后台程序)”存货时,这些“小幽灵(后台程序)”存货可以做近便的事情,就像一个内容寻址的内存记忆,或是自动概括的模式协关器。心智软件工程师们(事实上,是逆向工程师们)有一个很好的部件目录,他们可以从中订取聪明的“小幽灵(后台程序)”。
1701550407
1701550409
人的智能=神经网络+符号处理过程
1701550410
1701550411
心理语言中的规则和表征在哪里就停止工作呢,神经网络又在哪里开始发挥作用呢?大多数认知科学家赞同“两极分化说”。在最高的认知层次,我们有意识地亦步亦趋,小心运用着我们从学校所学的规则或自己发现的规则,这时,思维就像一个生产系统,记忆中储存着符号性语句,并由“小幽灵(后台程序)”来执行程序。在较低的层次,语句与规则是在神经网络中得到执行的,神经网络对熟悉的模式做出反应,并将这些模式与其他模式相联系。但这些层次的界限在哪里却仍有争议。到底是由简单的神经网络来应付大量的日常思维事务,用显性规则和命题来处理读书学习之类的任务呢,还是神经网络更像一些全然无知的基础构件,直到它们被组装成结构分明的表征和程序呢?
1701550412
1701550413
有一个学派称为联结主义(Connectionism),代表人物是心理学家戴维·鲁梅尔哈特(David Rumelhart)和詹姆斯·麦克莱兰德(James McClelland)。他们认为,简单的神经网络自身就可以解释绝大多数人类智能。更有甚者,联结主义宣称,思维就是一个很大的隐含层反向传播神经网络(Hidden-layer back-propagation network),抑或可能是一组类似或相同的神经网络,而当环境这个培训师调整影响联结的权重时,智能就出现了。我们比老鼠聪明的唯一原因是,我们的神经网络在刺激与反应之间有着更多的隐含层,我们生活环境中的其他人同样也是神经网络的培训师。心理学家不可能跟踪神经网络里通过联结所产生的数百万条激活信号流,而规则和符号可能就是对于网络中这些信息流的一个简便而粗略的估计,但其作用仅此而已。
1701550414
1701550415
而另一种观点认为,这些神经网络本身并不能完成任务,我更倾向于这种观点。将神经网络构建成为操控符号的程序这一过程,解释了大多数的人类智能。对符号的运用是人类语言及与语言相互作用的推理部分的基础。这并非所有的认知,但已经是很大一部分了;它已是我们能与自己和他人交谈的全部了。作为心理语言学家,我在工作中搜集的证据表明,即使是讲英语所需的最简单技能,如动词过去时态的组成(walk变为walked, come变为came),对单个神经网络而言,在计算上也是过于复杂而无法处理的。在本节中,我将阐释一个更为一般意义上的证据。我们的常识性思考内容(我们谈话中交流的那种信息),需要一个设计成执行高度结构化心理语言的计算机器呢,还是用通用的神经网络这类东西(有饶舌者戏称为联结浆糊[7])就能解决?我将向您说明,我们的思想有一个精巧的逻辑构成,这种构成绝非简单的同质单位层神经网络(simple network of homogeneous layers of units)所能处理的。
1701550416
1701550417
这与您有什么关系呢?因为这些证据对关于心智如何工作这一问题迄今最有影响力的理论提出了质疑。根据该理论,感知器(Perceptron)或隐含层神经网络(hidden-layer network)就是对一个古老教条——想法关联——的高科技执行翻版。英国哲学家约翰·洛克、大卫·休谟、乔治·伯克莱、戴维·哈特利,以及约翰·斯图尔特·密尔都提出,思想是由两条法则所决定的。一条为邻接律(Contiguity):时常共同体会到的想法会在头脑中建立关联。因而,一个被激活,则另一个也随之激活。另一条为相似律(Resemblance):当两个想法类似时,无论什么与第一个想法相关联,则自动也与第二个建立关联。正如休谟于1748年所总结的理论:
1701550418
1701550419
自身体验带给我们一些源自某些东西的一致性效应。当一个具有类似可感知特征的新产品被生产出来时,我们期待它能具有类似的功能,并寻找相仿的效应。从一个与面包有着类似光泽和形状的东西中,我们期待能获得相似的营养补充。
1701550420
1701550421
基于邻接律和相似律的关联方式也被认为是宣传著名“白板”(洛克对新生儿心智的比喻)的始作俑者。这个被称为“关联论”(Associationism)的学说统治英美的心智学界达几个世纪之久,直至今日,它在很大程度上仍占主导地位。当“想法”被刺激-反应所取代后,关联主义就变成了行为主义。白板说和上述两条“一般-目的”学习法则是标准社会科学模型的心理学基础。我们不时听到些陈词滥调,说我们的成长教育如何令我们在食物与爱、财富与快乐、身高与权力等诸如此类事物之间建立“关联”。
1701550422
1701550423
直到最近,关联论仍过于模糊而无法检验。但由于其通常在计算机上进行模拟仿真,神经网络模型可以使想法更为精确。由教师向神经网络提交一个输入和正确的输出,而神经网络则力求在未来对该输入和输出的配对加以复制。这种学习方案是一个很好的邻接法则模型。在所分配的输入表征中,概念本身并没有自己的单位(“鹦鹉”),而是由围绕其特性(“有羽毛”“有翅膀”,等等)的多单位激活模式来表征。这种输入表征使相似的概念得到自动的一般化归纳,因而很好地符合了关联论的相似法则。如果心智的所有部分都能像同一种神经网络来运作,我们就能得到“白板”的程序执行了。因而联结主义提供了一个机遇。通过观察简单神经网络能做什么和不能做什么,我们就能够对持续几个世纪之久的想法关联学说进行严格的检验了。
1701550424
1701550425
在开始之前,我们需要做一些解释性的说明。联结主义并不是心智计算理论的替代学说,而是对该理论的一个变体,它主张,人脑信息处理的主要类型就是多元变量统计。联结主义也并不是对人脑如电脑理论的必要更正(该理论认为人脑就像具有一个高速、无差错的序列性核心处理器的商业电脑。事实上,没有人认同这种理论)。阿契利斯认为,所有形式的思考都包含了对逻辑课本中上千条规则的严谨遵循,但现实生活中没有阿契利斯。最后,联结主义者所设想的网络是不现实的脑模型,尽管他们满怀希望地贴着“神经网络”这样的标签。例如,“突触”(联结权重)可以由兴奋转到抑制,信息可以沿着“轴突”(关联)双向流动,但这在解剖学上都是不可能实现的。当面临的选择是完成任务还是反映实际脑工作时,联结主义者往往选择完成任务;这说明他们所提出的神经网络只是一种大致基于神经元比喻的人工智能形式,而并不是一种神经建模。问题在于,这种神经网络是否执行了正确的计算来反映人脑思考的工作运行呢?
1701550426
1701550427
原始的联结浆糊不能合理地解释日常思考的5大不凡之处。这些不凡之处最初并不显眼,在逻辑学家、语言学家和计算机科学家们将句子的含义放到显微镜下仔细研究前,甚至没人意识到它们的存在。但正是这些不凡之处为人类思考赋予了独特的准确性和力量,而且我认为它们对回答一个问题提供了重要素材。这个问题就是:心智如何工作。
1701550428
1701550429
第一个本领是具有个体性的概念。首先我们来看看神经网络与类似计算机表征的第一个差别。那时我们不是将一个实体符号化为一串字符的任意模式,而是将它表征为一个单位层的模式,每一层代表这个实体的一个性质。这样的一个直接问题就是,无法再区分具有同样性质的两个个体。它们是以一种相同的方式来表征的,系统无视它们是不同的两块物质这一事实。我们已经丧失了个体性:我们可以表征蔬菜或马,但却无法表征某种蔬菜或某匹马。无论系统对于一匹马获知了什么,都会合并到它对另一匹完全相同的马的认知中。没有自然的方式来表征两匹马。让马的结点激活两次没有用,因为那与两倍地确信马特征的呈现或者认为马特征呈现程度增加一倍无法区分开来。
1701550430
1701550431
我们很容易把级别与亚级别之间的关系,混淆为亚级别与个体之间的关系。这两种关系确实在某方面很相似。两者中,任何高级别实体的特性都是从低级别实体那里继承来的。如果动物呼吸,且马是动物,那么马呼吸;如果马有蹄子,Ed.先生是马,那么Ed.先生有蹄子。这可以诱惑建模者将一个个体视为一个非常非常具体的亚级别,运用两个实体之间的某些细微差异来区分近似的“小幽灵(后台程序)”。——一个雀斑单位对于一个个体是开启的,而对于另一个个体则是关闭的。
1701550432
1701550433
正如许多联结主义者所提倡的,要回溯到英国联结主义。伯克莱写道:“拿走对柔软、潮湿、红色、酸味的感觉,你就等于拿走了樱桃,因为樱桃不是与感觉性质不同的东西。要我说,樱桃是一个感觉印象的集合。”但伯克莱的建议绝对是错误的。你对于两个物体特征的认识可以是完全相同的,而你仍觉得它们是可区分的。想象一个房间里有两把完全相同的椅子。有个人进来把它们彼此调换了一下位置。这个房间与从前一样吗?还是有所不同?很显然,每个人都明白它是不同的。但你不知道两把椅子的差异——除了你可以把一个想作一号椅子,另一个想作二号椅子。我们又回到了记忆插槽的任意标签,就像令人鄙夷的数字计算机中的一样!喜剧演员斯蒂芬·赖特的一个笑话也传达了同样的含义:“在我不在的时候,有人偷了我公寓里所有的东西,然后换成了完全相同的复制品。当我与室友说这事时,他说:‘我认识你吗?’”
1701550434
1701550435
当然,有一条总可以用来区分个体:它们不可能在相同的时间处于相同的地点。或许心智能够给每个物体都贴上时间和地点的标签,然后不时地更新这些坐标,使它能够区分具有共同性质的个体。但即使这样,也不能反映出我们心智中区分个体的能力。假设一个无限的白色平面上除了两个完全相同的圆圈之外什么都没有。其中一个圆圈滑过来在第二个圆圈上面贴住了一会儿,然后又滑走了。我想,任何人都会把这两个圆圈看作是不同的东西,即使它们在同一时间同一地点附着在一起的那一小会儿也是如此。这说明在某一时间处于某一地点并不是我们对于“个体”的心理定义。
1701550436
1701550437
这并不是说,个体无法在神经网络中得到表征。很简单,只需将一些单位用于表示为个体的识别身份,而独立于个体的性质特征。可以赋予每个个体它自己的单位,或者赋予每个个体一个以激活单位模式编码的等价序列号。寓意在于心智网络的设计要能够执行对个体的抽象逻辑内涵,就像计算机中标记任意标签的内存位置所起的作用。有问题的是受限于物体可观察特征的模式协关器,这个亚里士多德名言“感觉是理智的前提”的现代例证。
1701550438
1701550439
这个讨论只是一次逻辑练习吗?当然不是。个体的概念是我们社会推理整体知识的基本粒子。我让你看看两个现实生活中的例子,涉及那些人类交流的伟大领域,爱与正义。
1701550440
1701550441
同卵双胞胎的大多数特征都一样。除了外表的相似之外,他们思维相像,感觉相像,行为也相像。当然并不是完全一致,正因如此,有人可能会想把它们表征为非常狭窄的亚级别。但任何把它们表征为亚级别的生物体,都应当至少完全相同地对待同卵双胞胎。这个生物体应当将它的想法从一个传到另一个,至少在概率上或一定程度上如此——记住,这是联结主义及其在联结浆糊中贯彻的一个卖点。例如,无论双胞胎中一人的什么吸引了你——他的走路方式、谈话方式、他的外表,等等——这也会令双胞胎的另外一人吸引你。这应当将同卵双胞胎置于传说中围绕真正完美轮廓的嫉妒与背叛。事实上,什么事也没发生。同卵双胞胎中一个人的配偶对于另一个并没有感觉到罗曼蒂克式的吸引。爱将我们对另一个人的感觉锁定为那个人,而不是那种人,无论对那种的细分有多狭窄。
1701550442
1701550443
1988年3月10日,有人咬掉了警官戴维·J.斯托顿的半个耳朵。毫无疑问,是他俩中的某一人干的:要么是肖恩·布里克,一个住在加州帕洛阿尔托的21岁年轻人,要么是约纳森·布里克,他的同卵双胞胎兄弟。两人当时都在与警官扭打,其中一个咬掉了警官的半个耳朵。两人都被指控故意伤害罪、盗窃未遂罪、袭警罪和加重故意伤害罪。加重故意伤害罪,就咬耳朵行为而言,将被判终身监禁。斯托顿警官证实了双胞胎中的一个留着短发,另一个留长发,是留长发的人咬了他。不幸的是,3天后两人自首时,两人的发型都变成了相同的平头,而且两人也不说话。他们的律师辩称,两人谁也不应当因加重故意伤害罪而被判处严厉的监禁。对于兄弟俩中的每一个,都有合理的怀疑是否是他所为,因为有可能是另一个人所为。这项争辩很有说服力,因为我们的正义感要让我们选择做了某个行为的个体,而不是那个个体的性格特征。
1701550444
1701550445
我们对于个体位格的执迷并不是一个过于费解的奇癖,其进化的原因很可能是因为,我们所遇到的每个人,与我们所观察的任何财物大不相同;而这种不同之处在于,由于人类独特的胚胎学和个人传记式历史,人确定地容纳了大量不可复制的记忆和欲望。在第6章中,当我们反向逆推正义感和浪漫爱情的情感时,我们会看到记录个体位格的心理活动位于他们设计的核心。
1701550446
1701550447
人类并不是我们需要区别对待的唯一一种易混淆的个体,骗局是另一个真实世界中的例子。许多动物需要施展骗局才能保持个体的区分。一个例子是,需要辨别她孩子的母亲,她的这些孩子看上去和其他所有的并无二致,但却携带着她的基因。另一个例子是,牧群动物的捕获者,它需要追踪目标兽群中的一员,采取的就是像盯着游泳池里的标签一样的策略:如果你是目标猎获物,一旦确定就不再更换,分秒必争地直奔目标物。在肯尼亚的动物学家为了使他们的数据收集更加容易,在麻醉针麻翻了的角马角上涂了彩色的编码,但他们发现,在把被作了标记的动物放回兽群之前,无论怎样小心地使它恢复精力,它总会在一两天之后被鬣狗捕杀。一种解释是,彩色标记使鬣狗容易将那只角马与其他的区别开来,从而追赶它直至其力竭而成功将其捕获。最近关于斑马条纹的新观点是,它们不是为了要与条纹高草相混淆而将其作为保护色——这一直是一个可疑的解释——而是为了使斑马成为一出活生生的骗局策略,令狮子和其他捕食者很难将注意力只保持在一匹斑马上时。当然,我们无从知道鬣狗或狮子是否有个体的概念;也许一个古怪的人要站出来会看上去更令它们食欲大开。但这些例子说明了从类别中区分个体的计算问题,并强调了人类心智是如何轻而易举地解决了这个问题的。
1701550448
1701550449
关联主义的第二个问题被称为组成性问题:一个表征如何由各种部件组成,以及各个部件的含义和它们的组合方式又如何构成整个表征的含义。组成性是所有人类语言的精华特征。“The baby ate the slug”(婴儿吃了毛虫)的含义可以根据baby、ate、the和slug各词的含义以及它们在句中的位置而得出。整体不是部分的总和;当这些词的顺序变为“The slug ate the baby”(毛虫吃了婴儿)时,传达的意思就不一样了。因为你之前从没听说过这两句话,你必须通过在这串词上应用一套运算法则(整合句法的规则)才能解释整句的含义。每句话最终的含义是你在匆忙中组合在一起时的全新想法。你已经有了“婴儿”、“毛虫”和“吃”的概念,并能够为它们在心理公告板上安排相应的符号,而这种安排是根据能够读取的“小幽灵(后台程序)”所注册的方案而进行的。这样,对整句的理解就成为你从未有过的全新想法。
[
上一页 ]
[ :1.7015504e+09 ]
[
下一页 ]