1703948670
1703948671
虽然谷歌和亚马逊都是三者兼具,但是它们的商业策略并不相同。谷歌在刚开始收集数据的时候,就已经带有多次使用数据的想法。比方说,它的街景采集车收集全球定位系统数据不光是为了创建谷歌地图,也是为了制成全自动汽车。相对地,亚马逊更关注的是数据的基本用途而且也只把数据的二级用途作为额外收益。比方说,它的推荐系统把用户浏览过的网页数据作为线索,但是它并没有利用它预测经济状况和流感爆发。
1703948672
1703948673
亚马逊的Kindle电子书阅读器记录了一些读者反复标注和强调过的内容,但是亚马逊并没有把这些数据信息卖给作者或是出版社。书商肯定很乐意知道哪些段落是受读者喜欢的,因为这样他们就能提高销量;作者应该也想知道书籍的哪些地方不受读者欢迎,这样他们就能根据读者的喜好提高作品质量;出版社则可以通过这些数据知道哪些主题的书籍更有可能成为畅销书。但是,亚马逊把这些数据都雪藏了。
1703948674
1703948675
一旦得以有效利用,大数据就可以变革公司的赢利模式和传统交流方式。我们举一个典型的例子,通过得到竞争对手所没有的行业信息,欧洲一家汽车制造商重新定位了与它的一个零件供应商的关系。[5]
1703948676
1703948677
如今的汽车装满了芯片、传感器和各种软件,一经启动,它们就会及时把汽车状况信息发送到制造商的电脑上。一个典型的中档车大概有60个微型处理器,车上电子仪器的价值占了车辆总价值的三分之一。车载电子仪器之多使汽车成了“漂浮的观景台”,这本是莫里用来形容船舶的。而这些设备监控到的汽车零部件的工作状况,能够在整合之后用来提高汽车的质量,因此,能够掌握这些数据的公司拥有非常大的竞争优势。
1703948678
1703948679
汽车制造商通过与行业外的数据分析公司合作发现,德国供货商供应的油箱的蒸汽泄漏检测传感器存在一些问题,它会对好的油箱产生错误报警达16次。汽车制造商可以把这些信息反馈给供货商要求修理。在商业环境更加和谐的情况下,也许会发生上面说到的情况,但是既然汽车制造商已经在这个项目上花费了一大笔钱,它就会利用这个数据挽回一点点损失。
1703948680
1703948681
所以,汽车制造商开始考虑到底应该怎么做:卖掉这个数据?它值多少钱呢?如果供货商推卸责任呢?如果是我自己在操作过程中出现了失误呢?而且它知道,一旦公布了信息,和自己用同样零件的竞争对手也会改进他们的车。更明智的选择应该是,这些数据只能让自己受益,自己的汽车能够有所改进。最终,汽车制造商想到了一个好主意。它通过改进软件而改进了这个零件,而且为这次改进申请了专利。然后,它把这项专利卖给了供货商,价格是很长一段时间内进行数据分析的成本的总额。
1703948682
1703948684
全新的数据中间商
1703948685
1703948686
谁在这个大数据价值链中获益最大呢?现在看来,应该是那些拥有大数据思维或者说创新性思维的人。就像我们所见的一样,自从信息时代以来,这些第一个吃螃蟹的人都发了大财。但是,这种先决优势并不能维持很长的时间。随着大数据时代的推进,别人也会吸收这种思维,然后那些先驱者的优势就会逐渐减弱。
1703948687
1703948688
那么,核心价值会不会在技术上?毕竟,一个金矿的价值也只有在它被挖掘出来之后才有意义。但是,计算机的历史却否定了这一想法。如今,在数据库管理、数据科学、数据分析、机器学习算法等类似行业的技能确实很走俏。但是,随着大数据成为人们生活的一部分,而大数据工具变得更容易和更方便使用,越来越多的人会掌握这些技能,所以这些技能的价值就会相对减少,就像20世纪60~80年代之间计算机编程技术变得越来越普遍一样。现在,国外的外包公司使得基础的计算机编程技术越来越廉价,如今它甚至成为了世界贫困人口的致富驱动力,而不再代表着高端技术。当然,这一切并不是要说大数据技能不重要,只是这不是大数据价值的最主要来源。毕竟,技术是外在的力量。
1703948689
1703948690
大数据洞察
1703948691
1703948692
现今,我们正处在大数据时代的早期,思维和技能是最有价值的,但是最终,大部分的价值还是必须从数据本身中挖掘。因为在未来,我们可以利用数据做更多的事情,而数据拥有者们也会真正意识到他们所拥有的财富。因此,他们可能会把他们手中所拥有的数据抓得更紧,也会以更高的价格将其出售。继续用金矿来打比方:只有金子才是真正值钱的。
1703948693
1703948694
然而,如果数据拥有者做长远打算的话,有一个小问题十分值得关注:那就是在有些情况下会出现“数据中间人”,它们会从各种地方搜集数据进行整合,然后再提取有用的信息进行利用。数据拥有者可以让中间人充当这样的角色,因为有些数据的价值只能通过中间人来挖掘。
1703948695
1703948696
大数据先锋
1703948697
1703948698
数据中间商,交通数据处理公司Inrix
1703948699
1703948700
总部位于西雅图的交通数据处理公司Inrix就是一个很好的例子。它汇集了来自美洲和欧洲近1亿辆汽车的实时交通数据。这些数据来自宝马、福特、丰田等私家车,还有一些商用车,比如出租车和货车。私家车主的移动电话也是数据的来源。这也解释了为什么它要建立一个免费的智能手机应用程序,因为一方面它可以为用户提供免费的交通信息,另一方面它自己就得到了同步的数据。Inrix通过把这些数据与历史交通数据进行比对,再考虑进天气和其他诸如当地时事等信息来预测交通状况。数据软件分析出的结果会被同步到汽车卫星导航系统中,政府部门和商用车队都会使用它。
1703948701
1703948702
Inrix是典型的独立运作的大数据中间商。它汇聚了来自很多汽车制造商的数据,这些数据能产生的价值要远远超过它们被单独利用时的价值。每个汽车制造商可能都会利用它们的车辆在行驶过程中产生的成千上万条数据来预测交通状况,这种预测不是很准确也并不全面。但是随着数据量的激增,预测结果会越来越准确。同样,这些汽车制造商并不一定掌握了分析数据的技能,它们的强项是造车,而不是分析泊松分布。所以它们都愿意第三方来做这个预测的事情。另外,虽然交通状况分析对驾驶员来说非常重要,但是这几乎不会影响到一个人是否会购车。所以,这些同行业的竞争者们并不介意通过行业外的中间商汇聚它们手里的数据。
1703948703
1703948704
当然,很多行业已经有过信息共享了,比较著名的有保险商实验室,还有一些已经联网了的行业,比如银行业、能源和通信行业。在这些行业里,信息交流是避免问题最重要的一环,监管部门也要求它们信息互通。市场研究公司把几十年来的数据都汇集在一起,就像一些专门负责审计报刊发行量的公司一样。这是一些行业联盟组织的主要职责。
1703948705
1703948706
如今不同的是,数据开始进入市场了。数据不再是单纯意义上的数据,它被挖掘出了新的价值。比方说,Inrix收集的交通状况数据信息会比表面看上去有用得多,它被用来评测一个地方的经济情况,因为它也可以提供关于失业率、零售额、业余活动的信息。2011年,美国经济复苏开始放缓,虽然政客们强烈否定,但是这个信息还是被交通状况分析给披露了出来。Inrix的分析发现,上下班高峰时期的交通状况变好了,这也就说明失业率增加了,经济状况变差了。同时,Inrix把它收集到的数据卖给了一个投资基金,这个投资基金把交通情况视作一个大型零售商场销量的代表,一旦附近车辆很多,就说明商场的销量会增加。在商场的季度财政报表公布之前,这项基金还利用这些数据分析结果换得了商场的一部分股份。
1703948707
1703948708
大数据价值链上还出现了很多这样的中间人。比较早期的一个就是Hitwise,现在它已经被益百利收购了。Hitwise与一些互联网服务公司合作,它支付给这些公司一些费用以使用它们的数据。这些数据只是以一个固定的低价授权给Hitwise,而不是按它所得利润的比例抽成。这样一来,Hitwise作为中间人就得到了大部分的利润。另一个中间人的例子就是Quantcast,它通过帮助网站记录用户的网页浏览历史来测评用户的年龄、收入、喜好等个人信息,然后向用户发送有针对性的定向广告。它提供了一个在线系统,网站通过这个系统就能记录用户的浏览情况,而Quantcast就能得到这些数据来帮助自己提高定向广告的效率。
1703948709
1703948710
这些中间人在这个价值链中站在了一个收益丰厚的位置上,但是它们并没有威胁到为他们提供数据的数据拥有者的利润。现在,广告业是一个高利润行业,因为大部分的数据都藏身于此,而社会各行各业都急切地需要通过挖掘这些数据进行定向广告。随着越来越多的事情被数据化,越来越多的行业意识到它们与数据有交流,这些独立的数据中间人也会在别处出现。
1703948711
1703948712
有时,这些中间人不一定是商业性质的组织,也可能是非营利性的,比如,2011年由美国几个最大的医疗保险公司联合创立的卫生保健成本协会(Health Care Cost Institute)。它们的数据汇集了来自3300万人的50亿份保单,当然这都是匿名的。数据共享之后,这些公司可以看到在一个较小的独立数据库里看不到的信息。2008年9月,这个超大型数据库就有了第一个重大发现,那就是美国的医疗花费比通货膨胀率的增长速度快3倍之多。但是在各个细微方面的情况就各有不同了:其中急诊室治疗费用上涨了11%,而护理设施的价格实际上是下跌了的。显然,医疗保险公司是不可能把它的价格数据给除非营利性机构之外的任何组织的。这个组织的动机更明确,运行更透明化且更富有责任心。
1703948713
1703948714
大数据公司的多样性表明了数据价值的转移。在Decide.com的案例中,产品价格和新产品的发布数据都是由合作的网站提供的,然后合作双方共同分享利润。Decide.com通过人们在这些网站购买产品而赚取佣金,同时提供这些数据的公司也取得了部分利润。相比ITA提供给Farecast的数据不抽取佣金而只是收取基本授权费用的情况,这说明了这个行业的逐渐成熟——如今数据提供者会更占优势。不难想象,埃齐奥尼的下一个科技公司应该就会自己收集数据了,因为数据的价值已经从技术转移到了数据自身和大数据思维上。
1703948715
1703948716
随着数据价值转移到数据拥有者手上,传统的商业模式也被颠覆了。上文提到的与供货商进行知识产权交易的欧洲汽车制造商就拥有一个非常专业的数据分析团队,但是还需要一个科技公司来替它挖掘数据的价值。这个科技公司肯定是可以得到报酬的,但是大头还是被这个汽车制造商赚走了。不过,这个科技公司发现了商机,于是它改变了它的商业模式:它为客户承担一定的风险,因为有风险就有回报。而且,它用部分报酬换取了一部分的分析结果,因为这个分析结果是可以循环使用的。比如,对于汽车配件供应商来说,它们未来肯定都想为它们的产品加上测试仪或者把提供产品评估数据写进销售合同的标准条款中,这样它们就能随时改进产品的质量了。
1703948717
1703948718
对于中间商来说,公司之间不愿意进行数据共享的问题会让他们感到很头疼。比如Inrix就不再只收集关于地理位置的数据了。2012年,它就关于车辆的自动制动系统何时何地会生效进行了分析,因为有一家汽车制造商用它的遥感勘测系统实时地收集了这些数据。它们认为如果车辆的自动制动系统在某段路上老是启动的话,就说明这段路比较危险,应该考虑更换路径。所以Inrix不仅能够推荐最便捷的路径,而且可以推荐最安全的路径。但是这个制造商并不想和别人分享这些数据,也不愿分享它的全球定位系统收集到的数据。相反,它要求Inrix只能在它生产的车上安装这个系统。在制造商看来,公开这些数据似乎比汇聚众人的数据一起来提高系统的整体精确性更有价值。但即便如此Inrix也相信,到最后,所有的汽车制造商都会意识到数据共享的好处。Inrix有一种强烈的乐观精神:作为一个数据中间商,它的运行完全是依靠多种多样的数据来源。
1703948719
[
上一页 ]
[ :1.70394867e+09 ]
[
下一页 ]