1704007390
1704007391
1704007392
1704007393
图3-4 系统工程与全生命周期管理的有机结合
1704007394
1704007395
2.需求驱动的产品定义
1704007396
1704007397
结构化、集成化的需求管理为企业提供了统一、安全收集和管理客户之声的平台,这里的客户之声包括客户、合同、法规和企业自身标准等各方面的要求。通常的需求管理支持还要提供Live Integration功能。用户可以使用熟悉的Microsoft Office工具创建、编辑和维护需求,这些需求在需求管理环境中以结构化的方式体现。
1704007398
1704007399
集成的、结构化的需求管理环境可在整个生命周期内传达需求,将需求与功能、逻辑和物理实现相关联,将需求与项目管理、配置管理、变更管理相关联,需求管理将随着PLM应用的扩展而扩展,借助生命周期管理对需求进行全生命周期的跟踪。
1704007400
1704007401
基于需求的产品设计与验证集成环境还可以验证指标和行为的可行性。结构化的需求传递至CAD中成为MBD产品设计的需求源,基于HD3D的可视化业务智能环境,实现需求驱动的产品的设计和基于需求的设计验证。
1704007402
1704007403
3.基于模型的系统工程
1704007404
1704007405
基于模型系统工程的另一个关键领域是闭环的指标、建模、验证的支撑环境,它为产品开发提供了模型驱动的系统工程环境(见图3-5)。首先,它将系统建模、体系架构、系统仿真和需求管理与公司其余的产品和流程知识关联起来,支持企业对复杂产品的需求、子系统、约束条件和不同专业相结合(将机械设计、电子设计和软件设计综合起来)之后的交互关系进行建模和分析。其次,在产品开发的每一个阶段,无论是前期的架构设计,还是子系统设计,还是部件设计,都可以引入一个验证的环节,实现闭环的产品研发流程。这样形成的产品模型是一个多级复杂程度的模型,可用来实现不同设计阶段、不同专业的验证。
1704007406
1704007407
1704007408
1704007409
1704007410
图3-5 模型驱动的系统工程环境
1704007411
1704007412
MBSE的闭环环境还需要支持基于SysML/UML的标准数据模型。通过Live Integration功能,实现与Visio图表工具的集成,支持对基于SysML/UML的标准建模工具的集成,实现嵌入式的模型数据管理。以PLM与Visio图表工具的集成为例,通过建立Visio模板库中图形构件与PLM中模型元素的映射关系,开发团队可以在Visio中从面向系统的角度(即从由电气、电子、软件和机械组件构成的跨域解决方案方面考虑)快速地图形化描述复杂的产品,建立构件间的接口及联接,系统中会相应地自动生成产品的体系架构。
1704007413
1704007414
基于PLM,结构化方式管理的需求被分配到同样结构化的功能架构中,实现特定需求与特定功能分解的关联,在此基础上对系统整体进行评估和决策。功能架构通过逻辑架构的定义进行实现,通常需要在功能分解的各个层面定义对应的逻辑模型,同时定义各个子系统间的关联关系。以电气系统为例,逻辑设计以图形化的方式定义各个设备的输入、输出,以及与其他设备间的接口关系。基于PLM可以在统一的平台上实现需求模型与功能模型、功能模型与逻辑模型的关联管理,建立产品的集成化架构,实现所谓的“模型网络”,支持产品的系统化决策。
1704007415
1704007416
通过此环境可以创建和运行多物理场(机、电、液、热、控等)仿真模型,以分析复杂的系统特性,并支持控制系统的设计,从早期的技术参数确定到子系统测试。也可以对工程设计问题进行综合,根据性能需求创建产品的架构,对不同技术方案以及配置进行综合的工况设定,驱动仿真并对结果进行后处理。
1704007417
1704007418
4.系统仿真和分析
1704007419
1704007420
虚拟的系统仿真和分析使产品团队可利用模型进行系统的优化设计,评估范围更广的设计方案,减少对物理原型的依赖,减少后期返工的时间和成本损失。通过将PLM与建模和仿真环境相结合,能够实现主系统和分系统多学科协同仿真,可以帮助用户解决从产品概念设计、方案设计到详细的需求设计,如机构设计与动力学分析、控制/传动/电动机驱动等机电系统设计、机电一体化分析、结构有限元分析、振动噪声分析、疲劳耐久性分析、结构优化、模态分析、模型修正、多学科优化等问题,使企业在虚拟世界中及早地进行产品验证,帮助企业监视系统的性能,评估权衡选项。如图3-6所示。
1704007421
1704007422
通过PLM可以集成多种仿真工具,如集成MathWorks公司的Matlab/Simulink(主流的多领域仿真和基于模型的设计工具),Maplesoft公司的MapleSim(主流的多领域建模和仿真工具),西门子工业软件的NX等。集成的重点在于通过PLM管理仿真工具的模型,当模型变更时,或者模型在多个产品或配置中被引用时,用户可以快速而准确地找到模型的正确版本进行设计验证。
1704007423
1704007424
1704007425
1704007426
1704007427
图3-6 系统仿真和分析
1704007428
1704007429
在PLM中企业可以定义量化的系统性能指标,如重量、成本、功率、时间等。同时基于PLM与微软Office的Excel的Live Integration,用户可以在其熟悉的Excel电子表格中进行数据的编辑、操纵和卷积计算,为整个团队提供统一的性能指标视图,实现性能指标与系统架构的关联。企业可以及时地评估需求的变更对系统指标的影响,对权衡选项进行评估分析,保持系统与性能目标的匹配。
1704007430
1704007431
5.虚拟试验
1704007432
1704007433
虚拟振动试验涉及有限元建模、系统级NVH、多体动力学、控制与电磁系统仿真、刚柔耦合分析、机电一体化分析、试验相关性分析与模型修正、多学科优化等,并且需要将这些学科结合起来,是一个典型的多学科综合仿真问题,因此虚拟振动试验的软件实施环境应该是能够涵盖这些学科的系统级平台。多学科系统级平台的优点是一方面能够在一个平台中解决所有问题,并且能够进行多学科综合仿真;另一方面能够避免多学科综合过程中复杂的数据传递和转换,最大限度地避免数据和精度损失。
1704007434
1704007435
虚拟振动试验系统的构建有两种方式,一种是基于线性有限元方法的开环虚拟振动试验系统建模,主要是进行系统级振动分析;另一种是基于多体动力学和机电联合仿真的闭环虚拟振动试验系统建模,主要是进行机电耦合分析和刚柔耦合分析。两种方法可以结合起来,互为补充,应用在不同的场合下。
1704007436
1704007437
基于线性有限元方法的开环虚拟振动试验系统框架如图3-7所示,振动台和试件的模型都是有限元模型,其本质是复杂有限元装配模型的强迫振动响应分析,从图中可以看出各模块在线性有限元方法中所起的作用。
1704007438
1704007439
机电联合分析方法的系统框架如图3-8所示,此方法涉及运动、结构、相关性和控制、电磁等软件模块支持。
[
上一页 ]
[ :1.70400739e+09 ]
[
下一页 ]