1704436984
墨菲对准确和诚实所做的区分很细微,也相当重要。当我做出错误的预测时,我总会问自己,鉴于我所了解到的情况,这是不是我本该做出的最好预测呢?有时,我给出的答案是肯定的,因为我的思考过程是合理的,我已经进行了研究,建立了良好的模型,仔细考量了其中的不确定性。当然,有时我也会发现所进行的预测里有自己不喜欢的地方。或许我过于匆忙地搁置了一个关键证据,或许我高估了问题的可预测性,或许我在某些地方有所偏倚,或许根本就是动机不纯。
1704436985
1704436986
我并不是建议你每次预测错误时都要狠狠地责备自己,相反的,当你发现事情超出自己的瞬时掌控时,依旧能保持平和的心态,这才是做出正确预测的前提。但仍要留出空间问问自己,当时作决定时,自己的大脑里到底在想什么。
1704436987
1704436988
长远来看,当我们动机正确时,墨菲提出的准确性和诚实性就会汇于一点。但有时我们却做不到动机正确,比如,“麦克劳夫伦讨论小组”就肯定通不过墨菲的“诚实性预测”测试,他们似乎更关注自己在电视上表现得是否聪明,而不关注是否做出了准确的预测。他们本可以表现得很理性,但如果想要引起带有政党倾向的观众的注意,或是想要再次获邀参加节目,他们就会蓄意做出错误的预测。
1704436989
1704436990
墨菲的第三个途径是,预测的经济价值会使问题更加复杂化。比如,有人很同情罗斯博士的处境。如果预测一个城市的气温接近冰点,其降水形式可能是雨、冰雹或是雪,这真的值得大家给予更多关注,因为这几种情况都会对早上出行和居民安全造成不同的影响。然而,这更应该是气象频道集中资源、下大力气处理的问题。没有必要怀疑预测的准确性和诚实性。新闻报道力求保证其文章内容的准确性和诚实性,但它们仍然需要决定哪些文章可以放在头版头条。气象频道也要做出类似决定,经济因素是促使其这么做的合理理由。
1704436991
1704436992
然而,有时候,对于准确性、诚实性和经济价值的追求也会陷入更加激烈的斗争,而此时商业成功的重要性就要超过准确性了。
1704436993
1704436994
商业竞争如何使预测变得更糟糕?
1704436995
1704436996
任何气象预测都必须通过两项基本测试,以表明其优势所在:
1704436997
1704436998
1.它们必须做到气象学家所说的持续性,甚至做得更好。所谓持续性,是指假定明天(或者第二天)的天气同今天一样。
1704436999
1704437000
2.它们还要突破气候学规律。气候学规律是指长期以来特定区域、特定日期历史平均状况的综合。
1704437001
1704437002
早在理查德森、洛伦兹和蓝火计算机出现以前,我们的祖先就已经在使用这些方法了,如果我们无法改进这些方法,那么再昂贵的计算机也做不出出色的预测。
1704437003
1704437004
我们拥有大量有关过去气象预报结果的数据,至少可以追溯到第二次世界大战时期。比如,我可以登录气象网站 Wunderground.com,查询到1978年1月13日(我的出生日期)早晨7点,密歇根首府兰辛的天气状况:气温约8摄氏度,小雪,东北风。但是,几乎没有人会劳神费心地收集过去的气象预报。有人料到那天早上兰辛会下雪吗?你可能会到互联网上查找这样的信息,但却查不到。
1704437005
1704437006
2002年,一位名叫艾瑞克·弗娄尔的企业家改变了这种状况,他是俄亥俄州立大学计算机科学专业的毕业生,当时效力于美国第二大长途电话运营商美国世界通信公司(MCI)。最初只是为了比较政府预测模型和私有公司预测模型哪个更准确,他才开始收集国家气象局、气象频道和 AccuWeather 公司发布的有关气象预报的数据。起初,这个大规模的科学实验的项目多半是为了满足弗娄尔的个人求知欲,可随后迅速发展为有利可图的商机。人们创建了 ForecastWatch.com 网站,在很大程度上按照客户的要求对数据进行重新包装,其客户群的涵盖面很广,从能源商人(对这些人来说,气温发生的细微变化能转变为数万美元)到学者不一而足。
1704437007
1704437008
弗娄尔发现,没有一家气象预测机构是明显完胜的赢家。他收集的数据表明,AccuWeather 网站在降雨量预测方面的误差最小,气象频道在温度预测方面略胜一筹,而政府预测在各个方面都稳定出众,总之,它们做得都非常好。
1704437009
1704437010
但是,这些模型的预测时间跨度越长,其预测准确性就越低(见图4–6)。比如,提前8天的预测几乎没有任何技术含量,这种预测打破了稳定性,但并没有突破气候学规律。如果是提前9天或更多时间进行预测,那么这些专业的预测得出的结果就会比按照气候学规律推测的结果还要糟糕。
1704437011
1704437012
罗夫特告诉我,混沌理论是大势所趋,大气的动态内存会自我清除。尽管下面这个类比有些不准确,但对于理解这一原理还是有所帮助的。人们把大气想象成纳斯卡赛车的椭圆车道,围绕轨道行驶的不同车辆就代表不同的天气系统。比赛开始的十几圈,了解赛车的出发顺序能使我们更好地预测出它们经过的顺序。期间可能出现碰撞、急停、引擎故障等我们无法解释的状况,所以我们的预测不会完美无瑕,但总会比随便猜测的准确一些。很快的,速度较快的汽车就会领先速度较慢的车若干圈,不久,赛道上的顺序就完全被打乱了。也许与排位第二的赛车并驾齐驱的,是排位第16的赛车(即将落下一圈)和排位第20的赛车(已经落下一圈,眼看又要落下第二圈)。比赛最初的状态几乎没有什么参考价值,同样的,一旦大气有了足够的循环时间,天气模式与其最初的状态就不再相似,这些模型也就没有什么用处了。
1704437013
1704437014
1704437015
1704437016
1704437017
图4–6 高温预测对比
1704437018
1704437019
弗娄尔的发现仍然引起了一些令人不安的问题。预报发布的七八天之后,如果计算机模型的预测结果被证明是零技术含量,则会是另外一种情况。这些模型得到的结果竟然还不如普通人坐在家里查阅长期天气平均状况表得到的结果准确,怎么会这样?也许是因为计算机程序对天气系统中自然出现的反馈过于敏感,于是开始自我反馈。这不仅说明噪声中不再有信号,还说明噪声正在渐渐增强。
1704437020
1704437021
还有一个更大的问题,那就是如果提前过长时间做出的预测不准确,那气象频道(预测近10天的天气情况)和 AccuWeather 网站(将预测时间提前到15天)这样的公司为何还要继续发布预测呢?罗斯博士认为,因为这样做不会造成任何伤害,即使是单纯基于气候学的预测,对他们的用户而言也是有点用处的。
1704437022
1704437023
对于商业性的气象预报来说,统计学上的准确度没必要斤斤计较。在受众眼中,只有感知上的准确度才是有价值的。
1704437024
1704437025
比如,以赢利为目的的气象预报公司很少确切地预测下雨的概率为50%,这个概率对用户来说似乎显得空洞又模糊。相反,它们会投掷硬币且将数值四舍五入,得到60%或者40%的降水概率,尽管这样做会使预测结果更加不准确、不诚实。
1704437026
1704437027
弗娄尔还发现预测公司竟然明目张胆地篡改数字,这可能是气象预报行业里公开的秘密了。大多数商业性气象预报都是有偏向性的,可能是故意为之。这些预测公司尤其偏向于预测更多的降水量(但实际上降水并没有那么多),气象学家称之为“降水偏向”。从政府部门得到越多的原始数据,客户面对的气象预报就越多,这种偏向性就会越严重。预测就是这样通过减少准确性来“增加价值”的。
1704437028
1704437029
天气预报说降水概率为60%,你出门会带伞吗?
1704437030
1704437031
关于预测的重要测试中有一项叫作标定,我认为这是最重要的测试。很多次你都说降水概率为40%,但真正下雨的情况有几次呢?如果长期以来,下雨的概率的确为40%,那就说明你的预测是已标定的。而如果下雨的概率有时只有20%或者高达60%,那么你的预测就是未标定的。
1704437032
1704437033
很多领域都难以实现标定,它要求我们做到用概率的方法思考问题,而我们大部分人(包括大部分预测“专家”在内)对此都不是十分擅长。标定会给“过于自信”的预测者——大多数预测者都具有的特点——当头一棒,还需要利用大量数据进行充分评价,也就是对预测者发布的数百个预测进行全面评估。
[
上一页 ]
[ :1.704436984e+09 ]
[
下一页 ]