打字猴:1.70444089e+09
1704440890
1704440891 在高度的压力下,生活的规律会慢慢被揭示出来。针对“9·11”恐怖袭击事件的幸存者作过的一项研究发现,幸存者对他们所经历的事只能回忆起几分钟的细节,但对于“更大的环境”他们几乎完全不记得了。在这样的情况下,第一直觉和第一近似解可能非常不准确,无法意识到威胁的严重性。那些在强压下被迫做出决定的人,如在战场上的人,更容易成为带领其他人脱离险境的英雄。
1704440892
1704440893 在日常生活中,大脑也会尽可能地简化事物并求取其近似值。利用既有经验,这些简化和求取近似值的过程会成为有用的向导,构建起我们在日常生活中应用的可操作性知识。这两种方法并不完美,而我们也经常意识不到它们的粗糙性。
1704440894
1704440895 仔细思考以下7条陈述,它们与有效市场假说和个人投资者能否击败股票市场有关。每条陈述都只是上述关系的近似值(即粗略说明),但每一条都建立在最后一条的基础上,而且越来越准确。
1704440896
1704440897 1.没有哪个投资者能够击败股票市场。
1704440898
1704440899 2.长期看来,没有哪个投资者能够击败股票市场。
1704440900
1704440901 3.相对于其风险水平而言,长期看来,没有哪个投资者能够击败股票市场。
1704440902
1704440903 4.相对于其风险水平而言,考虑到其交易成本,长期看来,没有哪个投资者能够击败股票市场。
1704440904
1704440905 5.相对于其风险水平而言,考虑到其交易成本,长期看来,没有哪个投资者能够击败股票市场,除非他有内部信息。
1704440906
1704440907 6.相对于其风险水平而言,考虑到其交易成本,长期看来,几乎没有哪个投资者能够击败股票市场,除非他有内部信息。
1704440908
1704440909 7.长期看来,有多少投资者能够击败股票市场是一件很难说清的事,因为数据非常嘈杂,但我们知道,相对于其风险水平而言,大多数投资者都无法击败股票市场,因为股票交易存在交易成本,也就不会产生净超额回报。这样一来,除非他有内部信息,投资指数基金或许能有不错的赢利。
1704440910
1704440911 第一条陈述,即“没有哪个投资者能够击败股票市场”这条无限制条件的陈述,似乎极为确定。而到了最后一条则充满了不确定性,并不适合用作“车贴”式的标语,但这却是一个对客观世界更加完整的描述。
1704440912
1704440913 生活中处处都有近似事物,这很正常。如果你遇到一个对股票一无所知的陌生人,你告诉他,即使是在第一条陈述所描述的无限制条件的情况下,人们也很难击败股票市场,知道这一点也比一无所知好得多。
1704440914
1704440915 但是,一旦我们把近似误认作现实,问题就出现了,菲尔·特罗克提出的刺猬型专家就是这样。越简单的陈述似乎越符合一般情况,越能证明更加伟大的真相或是理论。然而,特罗克发现,刺猬型专家很不擅长作预测,他们总会遗漏所有能够使生活更加真实、使预测更加准确的点点滴滴。
1704440916
1704440917 我们的大脑有智慧,但我们生活的宇宙更是大得令人费解。以概率的方法思考问题的优点是,我们可以借这种方法强迫自己停下来,查出数据,放慢速度,仔细思考自己想法的不足之处。随着时间的流逝,我们会发现概率法会使我们的决定更加合理。
1704440918
1704440919 知道自己的观点源于何处
1704440920
1704440921 贝叶斯定理要求我们在权衡各种迹象之前,就要指出——并且是明确地指出——这一事件发生的可能性有多大。这种预测被称作“初始观点”。
1704440922
1704440923 我们的初始观点从何而来呢?从理论上讲,我们希望将初始观点建立在过去的经验——最好是社会经验——的集合之上。这是市场可以扮演的有用的角色之一。市场当然不是完美无瑕的,但绝大多数时间内群体判断都要优于个体判断。市场在权衡新迹象的时候形成了一个好的起点,在你还没有在某个问题上花费太多时间的情况下,尤其如此。
1704440924
1704440925 当然,市场并不适用于所有情况,将一些个案挑出来作为默认情况也是很有必要的。即使是常识,也可以作为贝叶斯定理的前提条件,与容易轻信的统计模型的输出结果进行比对。(这些统计模型虽然看似可以保证数学精确性,但其给出的都是近似结果,而且非常粗糙。)信息只有在恰当的环境下才会成为知识,没有环境,我们就无法从噪声中区分信号,我们对真相的追寻也会陷入错误判断的泥潭。
1704440926
1704440927 贝叶斯定理不能接受的,就是你假装自己没有任何初始观点的做法。人们应该努力减少偏见,但如果你说一点儿偏见都没有,反而暗示了你有很多偏见。预先陈述自己的观点——如“我的观点正源于此”——是诚信预测的方式,由此也可以认识到,我们对事实的感知是经过主观过滤的。
1704440928
1704440929 在不断的试错中进步
1704440930
1704440931 不断犯错,不断尝试,这或许是贝叶斯定理应用起来最容易的一个原则了:进行大量的预测。你可能不会将自己的公司或是生活赌在预测上,尤其是刚起步的时候,但这是唯一能够让自己取得进步的方式。
1704440932
1704440933 贝叶斯定理告诉我们,任何时候获得新信息,我们都应该更新自己的预测。简单地说就是,不断犯错,不断尝试。真正“拥有”大数据的公司,比如谷歌公司,并不会在建立模型的问题上花费太多时间。它每年会进行上千次实验,并在真正的客户身上检验它的想法。
1704440934
1704440935 贝叶斯定理鼓励我们权衡新信息时要遵守规律。如果我们的想法确实有价值,我们就应该建立可以证伪的假设来验证它们,并且将它们应用于预测当中。大多数时候,我们意识不到数据是多么嘈杂,所以对于最新的数据我们总是强加了太多个人偏见。政治记者经常会忘记,他们所报道的民调会存在误差幅度,而金融记者总是不能很好地向公众传达大多数经济统计数据是多么不精确。制造新闻的人往往是局外人。
1704440936
1704440937 但是,当我们在解决某个问题时,个人情感过多或是过于专业化,当事实发生改变而我们却无法改变时,就可能会产生相反的偏见。如果某个专家属于刺猬型,那么当数据与他的世界观不一致时,他可能会因为过于骄傲而不去改变自己所作的预测。各党派支持者总是期望他们的每个想法都能印在保险杠贴纸上,在他们承认自己对事实进行了过分简化之前,会经历各种错误。
1704440938
1704440939 验证想法的频率越高,就能越早地避开这些问题。眺望大海,等待着灵感迸发,想法就出现了,这是电影里才会有的情节。在真实世界中,即使已经准备就绪,想法也很少会出现,“大”想法就更不用说了。更加常见的情况是,我们只能凭借微小的、渐进式的,有时甚至是偶然出现的想法取得进步。
[ 上一页 ]  [ :1.70444089e+09 ]  [ 下一页 ]