1704531845
60人!归纳推理揭开的谜底
1704531846
1704531847
1704531848
1704531849
归纳推理(Inductive Reasoning) 在某些决策环境中,我们先形成各种各样的工作假设,并根据其中最可信的那个工作假设采取行动,如果不再有效,那么就用新的工作假设取而代之。
1704531850
1704531851
接下来,我将构造一个问题,以它为例来说明何为归纳推理,并阐述如何对归纳推理建模。假设现有N个人,每个人独立决定要不要在某个晚上去酒吧消遣。为了更具体起见,我们不妨假设N为100。酒吧的空间是有限的,如果酒吧里不太拥挤,那么来酒吧的人就可以度过一个愉快的夜晚。具体地说,如果这100个可能去酒吧的人当中,只有不到60个人真的去了,那么去的那些人就可以度过一个愉快的夜晚。没有人能够提前知道当晚会来酒吧的确切人数。因此,如果一个人或行为主体预期,当晚去酒吧的人小于60个,那么他就会去(他认为值得一去);如果他预期去酒吧的人会超过60人,那么他就宁愿待在家里。这些人在做出决策时,不会受自己以前有没有去过酒吧的经验的影响,同时不同行为主体之间也不存在共谋或事先的沟通。唯一可用的信息,是过去几个星期以来出现在酒吧中的人数。这个问题的灵感,来自圣塔菲研究所旁边一家名为“爱尔法鲁”的酒吧。这家酒吧每周四晚上都有爱尔兰音乐会。不过,很多类似的场所中都会出现同样的问题,比如读者可以想象一下你去吃午餐的餐厅,你也许希望它安静点,但是它可能很拥挤。事实上,任何“公地问题”或“协调问题”,只要涉及数量上的限制都是一样的。在这个问题中,我们感兴趣的是,每个星期来酒吧的人数变化的动力学机制。
1704531852
1704531853
不难看出,这个问题有两个有趣的特点。首先,如果有一个“显而易见”的模型,所有行为主体都能够根据这个模型,预测来到酒吧的人数并在此基础上决定去不去酒吧,那么通过演绎推理就能够求解了。但是,这里的问题显然不属于这种情况。给定最近来酒吧的人数,可以设想一大批看上去同样合理、同样有根据的模型。因此,也就无法得知其他行为主体可能选择哪个模型,这样某个“有参照意义”的行为主体,也就不能以某种确定的方式给自己选定一个模型。这里不存在演绎理性解,即没有“正确的”预期模型。从行为主体自身的角度来看,这里的问题是不明确的,因此他们被推进了一个归纳的世界。其次,在这里令人烦恼的是,任何一个共同的预期都会被打破。如果所有人都预测很少有人会去,那么所有人都会去,而这个结果将证明这种信念是无效的。同样地,如果所有人都预测大多数人会去,那么将没有人会去,这种信念同样被证伪。[3]由此,行为主体们的预期将被迫变得有所不同。
1704531854
1704531855
行文至此,我想请读者暂且先停下来思考一下:随着时间的推移,来到酒吧的人的数量(为了行文方便,以下简称为“到场人数”)会如何动态地变化。它会不会收敛?如果会收敛,那么为什么收敛?或者,它会不会陷入混沌呢?我们又该怎样进行预测?
1704531856
1704531857
动态模型
1704531858
1704531859
为了回答上述问题,我将根据上面描述的框架构建一个模型。假设这100个行为主体,每个人都可以形成若干个“预测器”或假说,即有这样的函数,将过去d周的到场人数映射为下周的到场人数。例如,最近各周的到场人数可能构成了如下序列:
1704531860
1704531861
……44,78,56,15,23,67,84,34,45,76,40,56,22,35。
1704531862
1704531863
据此,行为主体构建的假说或“预测器”可能是这样的,预测下周的到场人数将为:
1704531864
1704531865
• 与上周的到场人数一样[35],
1704531866
1704531867
• 与上周的到场人数以50为中心构成镜像[65],
1704531868
1704531869
• 过去4周到场人数的(四舍五入)平均值[49],
1704531870
1704531871
• 过去8周到场人数的趋势,上下界为0和100[29],
1704531872
1704531873
• 与两周之前的到场人数相同(以两周为周期的循环)[22],
1704531874
1704531875
• 与5周之前的到场人数相同(以5周为周期的循环)[77],
1704531876
1704531877
……
1704531878
1704531879
再假设,每个行为主体拥有一个由k个这样的“焦点预测器”组成的集合,而且可以将这个集合的“行为”记录下来。这样一来,他就可以用这个集合中当前最准确的那个“预测器”,来决定是去酒吧还是留在家中。我把这个“预测器”称为他的“活跃预测器”。一旦做出了决定,每个行为主体就会知道新的到场人数,同时更新他那些“预测器”的准确程度。
1704531880
1704531881
需要注意的是,在这个“酒吧问题”中,尽管决定到场人数的是行为主体们在采取行动时所根据的当前最可信的假说的集合,即“活跃假说”的集合,但是“活跃假说”的集合又是由历史到场人数所决定的。用约翰·霍兰德给出的术语来说,我们可以认为这些“活跃假说”形成了一个“生态”。我们感兴趣的是,这个“生态”如何随着时间的推移而进化。
1704531882
1704531883
计算机实验
1704531884
1704531885
对于大多数假说的集合来说,要得出解析解都很困难,因此我在下面将通过计算机实验来求解。在计算机实验中,为了生成假说,我先创建了一个预测器的“字母汤”,方法是将十几个焦点预测器连续复制很多次。然后,我随机地将k个(比如说,6个、12个或23个)预测器,赋予这100个行为主体中的每一个。这样一来,每个行为主体就拥有了k个预测器(或假说,或他可以利用的“想法”)。我们不必担心没有用的那些预测器会使得行为主体无从选择。如果预测器是“无效”的,那么它们就不会被使用;如果它们是“有效”的,那么它们就会被放到最前面来,成为“活跃的”预测器。在这个问题中,当给定了初始条件和每个行为主体可以运用的预测器集合后,所有预测器在未来的准确度都是预先确定下来的。因此,这里的动力学是确定性的。
1704531886
1704531887
实验结果非常有意思(如图2-1所示)。在出现了“循环探测”预测器的情况下,这种循环很快就因为被“套利”而消失了,因此不会存在持续的循环。如果有几个人预测,因为三个星期之前有许多人去,所以下个星期也有很多人去,那么他们将会留在家里。更有趣的是,平均到场人数总是会收敛到60人。这些预测器通过“自我组织”,形成了一个均衡模式或“生态”。在这个“生态”中,平均来说,所有活跃预测器,即那些最准确的、行为主体据此采取行动的预测器当中,有40%预测到场人数高于60人,60%预测到场人数低于60人。
1704531888
1704531889
1704531890
1704531891
1704531892
图2-1 爱尔法鲁酒吧前100周的到场人数
1704531893
[
上一页 ]
[ :1.704531844e+09 ]
[
下一页 ]