1704531859
为了回答上述问题,我将根据上面描述的框架构建一个模型。假设这100个行为主体,每个人都可以形成若干个“预测器”或假说,即有这样的函数,将过去d周的到场人数映射为下周的到场人数。例如,最近各周的到场人数可能构成了如下序列:
1704531860
1704531861
……44,78,56,15,23,67,84,34,45,76,40,56,22,35。
1704531862
1704531863
据此,行为主体构建的假说或“预测器”可能是这样的,预测下周的到场人数将为:
1704531864
1704531865
• 与上周的到场人数一样[35],
1704531866
1704531867
• 与上周的到场人数以50为中心构成镜像[65],
1704531868
1704531869
• 过去4周到场人数的(四舍五入)平均值[49],
1704531870
1704531871
• 过去8周到场人数的趋势,上下界为0和100[29],
1704531872
1704531873
• 与两周之前的到场人数相同(以两周为周期的循环)[22],
1704531874
1704531875
• 与5周之前的到场人数相同(以5周为周期的循环)[77],
1704531876
1704531877
……
1704531878
1704531879
再假设,每个行为主体拥有一个由k个这样的“焦点预测器”组成的集合,而且可以将这个集合的“行为”记录下来。这样一来,他就可以用这个集合中当前最准确的那个“预测器”,来决定是去酒吧还是留在家中。我把这个“预测器”称为他的“活跃预测器”。一旦做出了决定,每个行为主体就会知道新的到场人数,同时更新他那些“预测器”的准确程度。
1704531880
1704531881
需要注意的是,在这个“酒吧问题”中,尽管决定到场人数的是行为主体们在采取行动时所根据的当前最可信的假说的集合,即“活跃假说”的集合,但是“活跃假说”的集合又是由历史到场人数所决定的。用约翰·霍兰德给出的术语来说,我们可以认为这些“活跃假说”形成了一个“生态”。我们感兴趣的是,这个“生态”如何随着时间的推移而进化。
1704531882
1704531883
计算机实验
1704531884
1704531885
对于大多数假说的集合来说,要得出解析解都很困难,因此我在下面将通过计算机实验来求解。在计算机实验中,为了生成假说,我先创建了一个预测器的“字母汤”,方法是将十几个焦点预测器连续复制很多次。然后,我随机地将k个(比如说,6个、12个或23个)预测器,赋予这100个行为主体中的每一个。这样一来,每个行为主体就拥有了k个预测器(或假说,或他可以利用的“想法”)。我们不必担心没有用的那些预测器会使得行为主体无从选择。如果预测器是“无效”的,那么它们就不会被使用;如果它们是“有效”的,那么它们就会被放到最前面来,成为“活跃的”预测器。在这个问题中,当给定了初始条件和每个行为主体可以运用的预测器集合后,所有预测器在未来的准确度都是预先确定下来的。因此,这里的动力学是确定性的。
1704531886
1704531887
实验结果非常有意思(如图2-1所示)。在出现了“循环探测”预测器的情况下,这种循环很快就因为被“套利”而消失了,因此不会存在持续的循环。如果有几个人预测,因为三个星期之前有许多人去,所以下个星期也有很多人去,那么他们将会留在家里。更有趣的是,平均到场人数总是会收敛到60人。这些预测器通过“自我组织”,形成了一个均衡模式或“生态”。在这个“生态”中,平均来说,所有活跃预测器,即那些最准确的、行为主体据此采取行动的预测器当中,有40%预测到场人数高于60人,60%预测到场人数低于60人。
1704531888
1704531889
1704531890
1704531891
1704531892
图2-1 爱尔法鲁酒吧前100周的到场人数
1704531893
1704531894
从根本上看,这种涌现出来的“生态”可以说是有机的。这是因为,活跃预测器总体上可以按60:40分成两类,每一类的成员都在不断地变化。这就像一个森林,它的轮廓不会改变,但是组成它的每一棵树却一直在改变。这些结果在所有计算机实验中都出现了,而且当预测器类型以及分配给每个行为主体的预测器数量改变时,结果仍然非常稳定。
1704531895
1704531896
那么,这些预测器是如何实现自组织,导致了到场人数平均为60人,预测结果则按60:40的比率来分类的呢?一个可能的原因是,在这个“酒吧问题”中,60也许是一个自然的“吸引子”。如果我们把这个问题视为一个纯粹的预测博弈,那么不难看出,以40%的概率预测到场人数多于60人,以60%的概率预测到场人数小于40人,这个混合策略正是一个纳什均衡。然而,这仍然不能解释行为主体是如何接近这样的结果的,因为他们的推理是现实的、主观的。为了更好地理解这一点,不妨先假设70%的预测器在相当长的时期内,预测到场人数都在60人以上。这样一来,实际平均到场人数却只有30人,从而“证实”了到场人数接近30人的预测,并“证实”了到场人数高于60人的预测是不成立的。这将有助于恢复预测器之间的“生态平衡”,最后会调整为40%~60%的组合,而这个组合是可以“自我维持”的。但是,要从数学上精确地证明这一点,似乎并非易事。重要的是,我们一定要认识到,在设置预测器时,根本不需要考虑40~60人的“平衡预测”。尽管有的可能倾向于预测到场人数多,有的可能倾向于预测到场人数少,但是在总体行为中,上述“平衡预测”肯定会脱颖而出。当然,如果硬性规定所有预测器都只能预测到场人数低于60人,那么这个实验就会失败。结果是,所有100个行为主体总是都会到场。预测器必须能够在一定程度上“覆盖”整个预测空间。读者不妨思考一下,如果规定所有行为主体共享同一组预测器,结果会发生什么。
1704531897
1704531898
可能有人会反对说,在这些计算机实验中,我所使用的固定的、笨拙的预测模型给行为主体的预测造成了妨碍。如果他们能形成更开放的、更智能化的预测,那么不同的行为模型就可能涌现出来。当然,这可以算是一个猜想,有兴趣的人可以利用某种更加复杂的方法,例如遗传编程来检验这种猜想。遗传编程方法能够不断形成新的假说、新的预测器,它们能够利用“智能化”进行调整,并且随着时间的推移会变得更加复杂。我相信,我在上面给出的结果不会有任何质的变化,但如果在性质上真的被改变了,我会觉得非常惊讶。
1704531899
1704531900
对于这里介绍的“酒吧问题”,可以用很多方式加以推广。我也建议读者自己动手尝试进行计算机实验。
1704531901
1704531903
归纳推理的多彩世界
1704531904
1704531905
上面描述的归纳推理系统包括了多个“元素”,即信念模型或假说,这些“元素”要适应于它们共同创建的总体环境。因此,这个系统可以说是一个自适应复杂系统。在经过一段初始的学习之后,行为主体所使用的假说或心理模型相互适应下来。因此,我们可以将一组相互一致的心理模型视为一组能够在一定条件下很好地协同发挥作用的假说。这体现了很高程度的相互适应性。有时,系统中存在着一个独一无二的这种集合,它对应于一个标准的理性预期平衡,所有信念都被它所吸引着。不过,在更通常的情况下,存在着多个这样的集合,这种可能性要高得多。在这种情况下,我们就有理由认为,经济中的归纳推理系统,无论是在股市投机、谈判、扑克游戏、寡头定价中,还是产品的市场定价中,都会陷入循环或暂时锁定在某些心理模式中。这些心理模式可能是不会重复出现和路径依赖的,而且可能会越来越复杂。总之,可能性非常多。
1704531906
1704531907
长期以来,对于复杂的、可能无法界定清楚的决策环境,经济学家依然假设完美的演绎理性,但是他们又会为此感到不安。人类应用完全理性的范围,最多只能称得上还可以。这种说法也许很令人惊讶。到目前为止,我们还不清楚,应该如何处理不完全理性或有限理性。然而,上文对“酒吧问题”的分析表明,人类在这类决策环境中,运用的是归纳推理:我们形成各种各样的工作假设,并根据其中最可信的那个工作假设采取行动,如果不再有效,那么就用新的工作假设取而代之。对于这种推理,可以采用多种方式进行建模。通常,这种建模会引导我们进入一个丰富多彩的心理世界。在这个世界中,每一个行为主体的“想法”或心理模型,都要与其他行为主体的“想法”或心理模型竞争,以求得生存。
1704531908
[
上一页 ]
[ :1.704531859e+09 ]
[
下一页 ]