打字猴:1.704637109e+09
1704637109 二、要素价格变化对要素需求量的影响
1704637110
1704637111 从前例可以看出,如果r1上升,x1会下降;如r2上升,x1也会下降。如果r2上升,x2会下降,同样,如果r1上升也会导致x2下降。现在,我们来推导一下r1与r2变化对x1与x2的影响。
1704637112
1704637113 为推导这种影响,先引进生产函数f(x1,x2)凹性的概念。
1704637114
1704637115 【定义】 我们说f(x1,x2)为严格凹,如果
1704637116
1704637117
1704637118
1704637119
1704637120 并且
1704637121
1704637122
1704637123
1704637124
1704637125 不难验证,例1中的生产函数是严格凹的。而当生产函数为严格凹时,利润极大化问题有解。
1704637126
1704637127 从(7.4)式,可知
1704637128
1704637129
1704637130
1704637131
1704637132 因f1与f2分别为x1与x2的函数,我们对(7.4′)式再求关于x1、x2、r1、r2与p的全微分,有
1704637133
1704637134
1704637135
1704637136
1704637137
1704637138
1704637139
1704637140 公式(7.9)与(7.10)可以写成
1704637141
1704637142
1704637143
1704637144
1704637145
1704637146 用克莱姆法则解dx1,dx2(令),可以得到
1704637147
1704637148
1704637149
1704637150
1704637151
1704637152 同理 
1704637153
1704637154 这里,D>0是由于生产函数的严格凹性。
1704637155
1704637156 如果只看r1对x1的影响,我们令dr2=dp=0
1704637157
1704637158 则有
[ 上一页 ]  [ :1.704637109e+09 ]  [ 下一页 ]