1704828300
1704828301
我们独特的热爱生命的宇宙
1704828302
1704828303
假如我们的宇宙里生活着异类的生命,他们也许会以跟我们截然不同的思维方式来理解和“整理”五花八门的实在;但是一旦建立起联络,我们一定会达成共同的兴趣。他们可能由同样的原子构成,遵从同样的物理学定律。假如他们也长着双眼,有着明媚的天空,他们肯定会跟我们一样仰望星辰。我们为了自己的起源而追溯一个共同的创世纪——那个大约发生在130亿年前的大爆炸。
1704828304
1704828305
但是,不论我们的存在,还是异类生命(假如真有的话)的存在,都依赖于我们特别地与众不同的宇宙。一个适合生命的宇宙——我们也可以说一个热爱生命的宇宙——似乎一定是通过特别的方式组织起来的。任何形式的生命的先决条件,如稳定长寿的恒星、能结合成复杂分子的原子(例如碳、氧、硅)等等,都强烈地依赖于物理学定律,依赖于宇宙的大小、组成和膨胀速率。假如大爆炸时留下的“配方”稍有不同,就不会生出今天的我们。许多配方的宇宙可能没有原子,没有化学,没有行星,还没出生就已经死了;还有些宇宙,可能太短命,太空虚,除了空空的一片,什么演化也不会发生。独特的配方似乎是一个根本的奥秘。
1704828306
1704828307
爱因斯坦关心的深沉问题是,“上帝在创造宇宙的时候有过什么选择吗?”他用诗的语言表达了这样的思想——统治我们宇宙的定律是否是惟一的(因为某个深层的数学理由),或者,原始的配方是否可以根本不同?假如我们的宇宙是一个基本理论的惟一结果,我们就必须接受一个铁的事实:宇宙是为了生命而特别组织起来的。另一方面,如果爱因斯坦的问题是肯定的,那么基本定律会有更多的可能:它们允许有很多的配方,产生很多不同类型的宇宙。整个的多重宇宙由一组基本原理来统治,但我们所说的自然定律(或至少它们的一部分)却只能是局部的律令,是我们那场特殊的大爆炸之后的最初瞬间的偶然的环境事件的结果。
1704828308
1704828309
我们可以拿雪花来做类比。所有雪花都有一点共同的地方:六边形对称。这种对称是构成雪花的水分子的形态产生的结果。但是很难找到两朵完全相同的雪花。每一朵雪花的花样都取决于它自己的历史——例如,在它通过形成它的云层的时候,周围的气温和压力以什么方式变化。同样,我们宇宙的某些特征也可能是大爆炸以后不同冷却方式的偶然结果,而不是整个多重宇宙留下的什么更深层、更基本的印迹。它像一块炽热的铁在冷却中磁化,而磁化的排列方式却依赖于一些随机因子。如果物理学家得到了令人信服的基本理论,它应该告诉我们自然的哪些方面是那个基本理论的直接结果(正如雪花的对称花样是水分子基本结构的结果),哪些是偶然事件的产物(如每朵雪花的不同花样)。
1704828310
1704828311
假如确实存在一个宇宙的集合(能描绘我们大爆炸起点的理论也许能解决这个问题),那么大多数的宇宙要么是荒芜的——统治它们的定律排除了所有复杂的结构——要么太小或者太短暂,不允许时间和空间有充分的演化来产生复杂。我们(以及可能存在的异类生命)会发现我们生在一个不寻常的小世界,这里的定律允许复杂的演化。我们宇宙的这种看似“精心设计”的特征不应该令我们有多么惊奇,更惊奇的是我们在宇宙的特殊位置。我们不应跟着哥白尼的“平凡原理”走得太远。我们发现自己生活在一颗拥有大气的行星,在一个特殊的距离围绕着它的太阳旋转,凭这些,它就是一个非常特殊的与众不同的地方。在空间随机选一个位置都会远离任何恒星——很可能在星系间的某个虚空的空间,离最近的星系也有数百万光年。如果有很多宇宙,多数都不能居住;那么我们发现自己在一个可以居住的地方,一点儿也不应该奇怪。
1704828312
1704828313
总有一天我们会有一个令人信服的理论,它能告诉我们多重宇宙是否存在,某些所谓的自然律是否只是我们这个宇宙小碎片的局部法则。即使在拥有那样的理论之前,我们也能通过下面的问题来检验这种“人择”的合理性:在可能产生我们的那个小宇宙集合中,我们这个现实的宇宙是不是典型的?假如即使在这样的集合里(不用说在多重宇宙的大集合里)它也是异乎寻常的,那么我们必须抛弃多重宇宙的假说。也可以从另一个方面来检验多重宇宙理论。我们考虑斯莫林的猜想:新宇宙诞生在黑洞的内部,儿女宇宙的物理学定律还保留着父母定律的记忆,仿佛有什么宇宙的遗传。如果斯莫林是对的,能产生更多黑洞的宇宙将具有更大的“生育优势”,而这优势还将遗传给下一代。如果我们的宇宙是这样一代代产生出来的,对生成黑洞来说,它应该接近最佳的状态。就是说,任何定律和常数只要有了丝毫的改动,黑洞就可能不那么好形成了。斯莫林的思想还没有得到具体理论的支持——如物理信息(甚至时间箭头)如何从一个宇宙传递到另一个。我个人对它的复兴也不抱多大希望。不过,我们还是应该感谢斯莫林,他向我们说明多重宇宙的理论在原则上是可能被否定的。
1704828314
1704828315
这些例子说明,某些关于多个宇宙的要求,跟任何一个好的科学假说一样,是可能被拒绝的。9我们不能满怀信心地说发生过多个大爆炸——我们连自己宇宙的极早期历史都没有足够的认识。我们也不知道基本原理是否是多种多样的,解决这个问题是物理学家未来50年的挑战。但是,假如基本定律是多样化的——假如它们允许各种宇宙的创生——那么,关于“我们的宇宙为什么那样”的所谓人择解释就合理了。实际上,对宇宙的某些重要特征,这将是我们所能得到的惟一一种解释。宇宙学的局部似乎会变成进化论的生物学。
1704828316
1704828317
我们传统意义的宇宙也许是许多大爆炸之一的产物,正如我们的太阳系不过是银河系里众多行星系统里的一个。池塘里冰晶的模式是偶然事件形成的,不是水的基本性质的结果;同样,某些看似不变的自然常数也可能是任意的,而不是基本定律惟一确定的。所以,为我们所谓的自然常数追寻精确的公式,可能终归是徒劳的,就像开普勒当年为行星轨道寻求什么精确的数字关联。10别的宇宙也许成为科学进程的一部分,正如“别的世界”已经存在好多世纪了。不管怎么说(在这里,科学家应该高兴地把领地让给哲学家),关于为什么事物存在——为什么有宇宙而不是没有——的认识,还在形而上学的领地里,而且一定会永远驻足在那里。
1704828318
1704828319
里斯(Sir Martin Rees)是剑桥国王学院的皇家学会教授。30岁时,继霍伊尔(Fred Hoyle)之后,在剑桥当选为天文学和实验哲学的Plumian教授。他提出过许多重要的宇宙学概念。例如,他第一个建议类星体奇异的高能量核心是从巨大黑洞获得能源的。在最近20年里,在剑桥的天文学院主持了一个宏大的研究项目。他写过几本书,包括《宇宙魔力》(Gravity’s Fatal Attraction,与Mitchell Begelman合作),《天体物理学新展望》(New Perspec-tives in Astrophysical Astronomy),《开始之前:我们的宇宙及其他》(Before the Beginning:Our Universe and Others),《6个数:形成宇宙的力》(Just Six Numbers:The Deep Forces That Shape the Universe),以及最近出版的《我们的宇宙家园》(Our Cosmic Habitat)。
1704828320
1704828322
2050年的数学
1704828323
1704828324
I·斯特瓦特
1704828325
1704828326
在所有的科学中,数学大概具有最悠远而连绵的历史——只有天文学能跟它比。两样学科至少都可以追溯到古巴比伦时代,那时的发现在今天依然是重要的。天文学建立在过去的发现上,数学也一样。天文学的基础是对现实世界的观测,而数学则是共有的思想的社会结构;但思想是天文学的驱动力,而数学却在对真实世界的模拟中成长起来——它记数过去的日子,测量田地的大小,计算给国王的贡品。
1704828327
1704828328
在天文学里发生过几次革命。旧的概念被推翻了,新的迥然不同的概念出现了。例如,1877年,意大利天文学家斯基帕雷利看到了火星的canali(“河道”),这个发现的误译很快传开,使很多人(甚至一些天文学家)相信火星上居住着智慧生命。11现在我们有了更好的认识。人们常说,数学不可能有革命,因为数学真理的本质是不会改变的。但是,人的态度在改变,数学中最大的革命之一就是改变我们关于数学“真理”的概念。因为哥德尔(Kurt G?del)和图灵(Alan Turing),我们才发现原来数学的真理也不是绝对的。
1704828329
1704828330
未来50年里,数学将发生几场大的革命。有的已经在发生了——计算机的不断增大的影响,生命科学和金融行业提出的新的挑战。还会出现别的,但我们只能说,许多事情是不可能预言的。不同的评论家都预言数学证明的观念会发生改变,那可是数学的核心概念。有些人说计算机将带来一个根本不同的数学证明的概念,还有些人则认为那样的概念将彻底消失。两种观念都在根本上错看了当前的潮流。在数学中,证明取代了其他科学中观察和实验的地位——就是说,数学通过证明来避免被个人的聪明引向歧路,避免因为喜欢而相信并不真实的东西。显微镜的发明不能取代生物学实验,计算机同样也代替不了数学证明。正如我们在这个生物学的类比中看到的,计算机修正和强化了证明的技术,但是没有改变基础的哲学——证明说的是逻辑的一贯性,从已知的定理导出新的定理,而推导的路线应该能经受任何怀疑专家的最仔细的审查。在未来50年里,证明的概念仍将完整地保留下来,我们仍然相信它是数学事业中最基本的东西。
1704828331
1704828332
数学的力量来自两个不同源泉的汇流。一个是“真实的世界”。开普勒、伽利略、牛顿等告诉我们,外在世界的诸多方面可以通过简单而微妙的数学法则(“自然定律”)来认识。有时物理学家会修正这些定律的形式。牛顿力学让位给量子力学和广义相对论,量子力学让位给量子场论,量子引力和超弦指引着未来的理论修正的方向。现实世界的问题激发新数学的产生,即使产生它的理论改变了,那数学往往还在,而且依然重要。
1704828333
1704828334
数学的第二个力量源泉是人类的想像力——为了数学而追求数学。从真实世界到一个圆满的数学分支要走过一段艰辛的路程:需要经过一定的探索;而勇敢的先驱者们常常在追求个人的幻想中脱离主流,然后发现更好的路线。对这些先驱者来说,探索的价值是显而易见的:那正是他们的动力,除了它本身的意义,不需要更多的理由。
1704828335
1704828336
这两样作风的数学通常被划分为应用数学和纯粹数学。这两个词都不够准确,都是容易误会的概念。许多“应用的”数学实际上没有应用于任何现实的事物;“纯粹”数学的纯粹指的是它的方法,而不是说它轻视这门学科的实用价值。不过,这两个名词的确说明了不同数学风格的两个极端——而全部数学则是联系外在世界的规则与人类神奇想像力的一个统一的整体。正是这样的整体性和它双向的思维路线,才给数学带来了那么巨大的威力。我们要进步就需要那两种作风,硬说一个比另一个更优越是毫无意义的。
1704828337
1704828338
100年前,很多数学家拓展了那个数学体。才过50年,它已经庞大到没有人能完全把握了;于是个人越来越专业,生出四分五裂的学科。纯粹数学家与应用数学家分化为两大阵营,各自怀有不同的哲学。关于基础,关于证明的需要,关于方法,关于问题的意义,他们都抱着不同的看法。他们仿佛是从一个大的教派分裂出来的两个派别。但是在新千年到来时,这种自我分裂的趋势发生了逆转。纯粹数学的方法为应用数学带来了新的活力;应用中出现的问题刺激了纯粹数学的新发展。两家的界线开始模糊了;其实,那本来就不是什么实在的界线,而主要在于认识的分歧。在未来的50年里,涌向更大统一的潮流将越来越快,那时候,我们将只有数学家,没有定语的限制,没有派别的争论。专门化的专家还是存在的,不过,他们的专业将融合纯粹数学的抽象逻辑和概念意识与应用数学的具体考虑。我们都将成为数学家,为了那共同的伟大目标奋斗,徜徉在伟大的“超智慧”集合的数学的一块小小的自我天地中间。我们将认识徜徉在其他小天地的伙伴,我们会感谢他们的存在,尊重他们的活动,因为他们的贡献,数学才更加光大。
1704828339
1704828340
关于未来50年,有一点我们可以满怀信心:我们会看到巨大的进步。数学的黄金年代不在古希腊,不在文艺复兴的意大利,也不在牛顿的英格兰,而在今天。在50年里仍然跟今天一样。这个观点的最好证明是在未解的大难题上取得的进步。那些问题提出几百年了,曾一直困惑着一些伟大的头脑,直到有一天我们发现了走近它的路线,产生了新的思想,那难题才张开缺口。最近,怀尔斯(Andrew Wiles)证明了费马大定理,这是一个最好的例子。12大约1637年,费马(Pierre de Fermat)在他的丢番图(Diophantus)《算术》(Arithmetica)的页边写道,两个完全立方数之和不可能等于另一个完全立方数,四次方以及更高的次方,都是如此。几百年来所有关于这个问题的证明的努力都失败了。到1995年,怀尔斯才赢得了20世纪的这场最伟大的数学胜利。他的解决运用了一个新方法:将费马的表述转换为一种意义更加广泛的关于“椭圆曲线”——一个截然不同的数论领域——的命题,然后把每一种可能的现代工具都用进来对付这个新生的问题。
1704828341
1704828342
当前,最有名的一个未解难题是黎曼猜想,那首先是黎曼(Georg Bernhard Riemann)提出来的。这是复分析里的一个相当专门的问题,它猜想的答案可能为素数理论、代数数论、代数几何甚至动力学带来曙光。近些年来,还出现了它跟量子物理学的有趣联系。我想大胆预言,到2050年时,黎曼猜想会得到证明——人们期待的那个结论是正确的——而它与物理学的联系将在证明中发挥巨大的作用。不过,保守些说,我想解决猜想的最后路线不会基于它今天跟物理学的联系,真正的联系还难以想象。
1704828343
1704828344
1900年,那个时代最伟大的数学家希尔伯特提出了未来需要解决的23个重大问题。多数问题都解决了,但黎曼猜想还没有。2000年,麻省剑桥的克莱(Clay)数学研究所提出了7个久远的难题,每个问题悬赏100万美圆。13其中一个就是黎曼猜想。另外几个问题是:庞加勒(H.Poincaré)猜想,关于三维球面的几何特征;理论计算机科学的P/NP问题,要求证明困难计算确实存在;代数几何中的霍吉(Hodge)猜想和伯奇/斯温纳顿-代尔(Birch/Swinnerton-Dyer)猜想;粘性流体动力学的纳维尔-斯托克斯(Navior-Stokes)方程的解是否存在;证明量子场论中的“质量间隙假设”。我想,我们到2050年会对那7个问题有更多的认识,发现不同的结果。大概,庞加勒猜想那时还会悬着,P/NP问题将证明在形式上是不可确定的,霍吉猜想将被否定,伯奇/斯温纳顿-代尔猜想将被证明,纳维尔-斯托克斯方程在一定的奇异条件下没有解,质量间隙可能通过这样那样的方法解决,不过物理学家不会再对它感兴趣了。
1704828345
1704828346
700万美圆的奖金不会把数学家引上新的路线。无论如何那是不可能的,因为数学家不像分子生物学家那么特别受金钱的诱惑。不过,它还是会达到一个目的,向圈外的人说明那7个问题有多重要——从而更一般地说明数学有多重要。我很愿意猜测这个信号会传到政府的基金管理部门,他们最终会认识到,把几十亿美圆花在数学上,比花在新粒子加速器的零碎上或者别的什么庞大的生物学的“集邮”活动,更能实质性地改变人类的生存状态,能产生更积极的影响。我想说,但我不会说。14
1704828347
1704828348
P/NP问题是关于计算机的,却不是计算机所能解决的。它需要的是一个旧时的好思想。因为这个特殊的问题,计算机什么忙(即使是探索性的)也帮不了;不过它们能发挥别的作用,告诉数学家可能有什么猜想,然后数学家去寻求证明。我们现在越来越离不开这样的作用了。更重要的是,计算机将在许多证明里起着关键的作用,这已经成为时下的趋势。在适当的程序下面,今天的计算机远不是60年代闹哄哄的数字机器所能比拟的。它们已经可以在严密的逻辑下充当我们证明问题的“助手”了。最有名的例子是阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)1976年对四色定理的证明。那个定理最早是古斯里(Francis Guthrie)在1852年提出的,说的是平面上任何一幅地图只需要四种颜色就能区别出任意相邻的两个国家。证明的基本思想是把定理归结为一个程式化的识别过程,确认大约两千种特殊的地图(那是没有使用计算机发现的)具有一种特殊的数学性质。计算机进行了必要的计算,证明果然是那样的。
1704828349
[
上一页 ]
[ :1.7048283e+09 ]
[
下一页 ]