打字猴:1.700495942e+09
1700495942 算法之美:指导工作与生活的算法 [:1700494158]
1700495943 算法之美:指导工作与生活的算法 哥白尼原则
1700495944
1700495945 谚语
1700495946
1700495947 预测本就是一件难事,预测未来尤其如此。
1700495948
1700495949 当理查德·戈特看到柏林墙时,他问了自己一个非常简单的问题:我在哪?也就是说,在这一人工建筑存在的全过程中,我是否恰好已经到达了呢?简而言之,他是在从时间角度问一个空间问题,而这一问题正是在400年前深深吸引着天文学家尼古拉·哥白尼的问题:我们在哪?地球在宇宙的什么位置?与前人不同,哥白尼激进地以为地球不是宇宙的中心,也就是说地球没有什么特别的。戈特决定采取同样的关于时间的分析步骤。
1700495950
1700495951 他设想,他到达柏林墙的那一刻并不特别,因为这只是柏林墙整个历史中的一瞬。如果有任何一个时刻都有同样的可能性,那么平均来说,他的到来应该是在一个精确的中间点(因为他有50%概率是在此之前到来,或50%的概率是在此之后)。更普遍的是,除非我们确定我们在某个特定时间现象中出现的特定中间点。[1]如果我们假设我们到达的中间点有精确的时间,那么对于它在未来还可以持续多久的最佳猜测就变得很明显:确切地说就是它已经存在的时间。戈特看到柏林墙时已经建成8年了,所以他最好的猜测是,它将再存在8年。(最终,这个数字是20年。)
1700495952
1700495953 这个简单的推理,被戈特称为哥白尼原则,它可以得出一个简单的算法,能为各类事件做出预测判断。在没有任何先入为主的预测时,我们不仅可以用它来获得对柏林墙终结时间的预测,同时也可以预测任何其他短期和长期现象。哥白尼原则预测道,美利坚合众国作为一个国家将一直持续到2255年左右,谷歌将持续到大约2032年,你与你的朋友一个月前开始的一段关系将可能再持续约一个月(也许你该告诉他不要参加刚收到的婚礼邀请呢)。同样,它告诉我们要持怀疑态度,例如,《纽约客》杂志封面是一个人拿着一个6英寸的智能手机,上面有大家熟悉的网格正方形应用程序图标,标题为“2525”。但这是令人怀疑的。据我们所知,智能手机刚诞生10年,哥白尼原则告诉我们,它不可能出现在2025年,更别说5世纪后了。到2525年,即使还有一个纽约市存在,也会让人感到吃惊。
1700495954
1700495955 更实际地说,如果我们正在考虑一份建筑工地的工作,他们的标牌表明“上一次工程事故发生在7天前”,我们可能会想离开,除非这是一份我们计划做得特别短的工作。如果一个城市的公交系统承担不起可以告诉乘客下一班车什么时候会到来这一非常有用却很昂贵的实时提醒系统的话,哥白尼原则表明,可能有一个更简单也更便宜的替代品。那就是简单地显示前一辆公交车到达此处的时间距离现在有多久,这可以为判断下一辆公交车到来的时间提供一个实质性的提示。
1700495956
1700495957 但是哥白尼原则就一定正确吗?当戈特在《自然》杂志上发表了他的猜想之后,该杂志收到了很多重要信件。当我们尝试将规则应用到一些比较熟悉的例子时,很容易理解这是为什么。如果你遇到一个90岁的男子,哥白尼原则预测他会活到180岁。同时,每个6岁的男孩都会被预测将在12岁时早逝。
1700495958
1700495959 要理解为什么哥白尼原则是合理的,以及为什么它有时不合理,我们需要回归到贝叶斯法则。因为,哥白尼原则尽管具有明显的简单性,但其的确是贝叶斯法则的一个实例。
1700495960
1700495961 [1]这很明显是个讽刺:说到时间,通过假设我们的到来没有什么特殊性从而引申出我们处于最中心位置。
1700495962
1700495963
1700495964
1700495965
1700495966 算法之美:指导工作与生活的算法 [:1700494159]
1700495967 算法之美:指导工作与生活的算法 贝叶斯与哥白尼
1700495968
1700495969 在预测未来时,如柏林墙的寿命这类问题,我们需要评估的假设是所有手头上掌握的现象的持续时间:它会持续一个星期,一个月,一年,还是十年?正如我们已经看到的,要应用贝叶斯法则,我们首先需要给每个现象的持续时间分配一个先验概率。事实证明,哥白尼原则正是应用贝叶斯法则并使用了所谓的无信息先验的结果。
1700495970
1700495971 起初,这似乎是一个矛盾。如果贝叶斯法则总是要求我们明确事先的预测和想法,我们又怎么能告诉它,我们没有任何预测结果呢?在彩票抽奖的情况下,为无知进行辩护的一个方法就是被称为“统一先验”的方法,这就是认为每个中奖彩票的比例都是相同的。[1]在柏林墙这一例子中,无信息先验意味着:我们对将要预测的时间范畴一无所知:墙可能会在接下来的5分钟或5年后倒塌。
1700495972
1700495973 除了这些无信息先验,如我们所见,我们供应给贝叶斯法则的唯一一部分数据,事实上就是我们到达柏林墙的时候,它已经存在了8年。任何预测它小于8年寿命的假设都可以被排除,因为这些假设不能解释我们这里的情况。(同样的,一枚双头像硬币就可以排除字那面的可能性。)任何超过8年的预测都是有可能的,但是如果柏林墙要存在100万年,那它将是一个很大的巧合,表明我们几乎是接近它存在的最初起点。因此,即使特别长的寿命不能排除,但它也不大可能出现。
1700495974
1700495975 当贝叶斯法则与所有这些概率结合——更有可能的短时限就拉低了平均预测,可能性更小但也有一定可能性的长时限又将其拉高,哥白尼原则便出现了:如果我们要预测某个事物还将持续存在多久(在对它没有其他任何了解时),我们可以做出的最好的猜测就是,它将再持续已经存在的时间。
1700495976
1700495977 事实上,戈特并不是第一个提出类似哥白尼原则的人。20世纪20年代中期,贝叶斯统计学家哈罗德·杰佛利曾考虑仅仅通过一辆城市有轨电车的序号来确定一个城市有轨电车的数量,并得出了相同的答案:该数字的双倍。一个类似的问题出现得更早,在第二次世界大战期间,同盟国试图估计由德国制造的坦克数量。他们通过所捕获的坦克的序列号,在纯数学估计的基础上进行预测,得出的结果是德国每月生产246辆坦克,而通过广泛的(高度危险的)空中侦察所获得的估计表明,这个数字更接近于1400。而战后,德国记录显示的真实数字是:245。
1700495978
1700495979 在认识到哥白尼原则是无信息先验基础上的贝叶斯法则之后,就可以回答很多关于其有效性的问题。哥白尼原则在我们什么都不知道的情况下似乎是合理的、准确的,如在1969年看到的柏林墙,我们不确定什么时间范畴是合适的。同时,在我们对某一对象的确有所了解时,就会感觉这是完全错误的。预测一个90岁的人能活到180岁是不合理的,这恰恰是因为我们关于人类寿命已经了解了很多——在这种情况下,我们就可以预测得更好。我们给贝叶斯法则带来的先验信息越丰富,我们便能从中得到越有用的预测。
1700495980
1700495981 [1]这正是拉普拉斯定理的最简单的形式:假设有1%或10%的彩票中奖,就跟50%或100%的可能性一样。w+1/n+2这一公式便会天真的建议在你买一注强力球彩票未中奖之后,你就有1/3的机会赢得下一注——但这一结果却如实地反映了彩票这一不为人所知的概率。
1700495982
1700495983
1700495984
1700495985
1700495986 算法之美:指导工作与生活的算法 [:1700494160]
1700495987 算法之美:指导工作与生活的算法 真实世界的先验……
1700495988
1700495989 从广义上讲,世界上有两种类型的事物:倾向于(或围绕)某种“自然”价值的事物,以及与之相反的事物。
1700495990
1700495991 人类的生命跨度显然是属于前一类。它大体遵循所谓的“正态”的分布,也被称为“高斯”分布(这是以德国数学家卡尔·弗里德里希·高斯命名的),同时因其分布的形状特征也被形象地称为“钟形曲线”。这种形状能很好地表现人类的寿命,例如,美国男性的平均寿命集中在76岁左右,曲线顶端的两边呈现急剧下降的趋势。正态分布往往都有一个适当的比例:一位数的寿命往往会被认为是悲惨的,三位数的寿命是非凡的。自然世界的许多其他事情也都呈现正态分布的趋势,从人的身高、体重、血压,到城市正午的温度,或是果园的果实直径。
[ 上一页 ]  [ :1.700495942e+09 ]  [ 下一页 ]