打字猴:1.700550148e+09
1700550148 人机平台:商业未来行动路线图 [:1700549378]
1700550149 人机平台:商业未来行动路线图 02 最像人脑的机器
1700550150
1700550151 我相信到20世纪末,词汇的用法和一般教育理念会发生很大改变,因此那时将可以谈论机器思维而不再怕造成矛盾了。
1700550152
1700550153 艾伦·图灵(Alan Turing),1950年
1700550154
1700550155 我们刚刚开发数字化电脑时,就尝试让它们像我们一样思考。从一开始就显而易见的是,电脑对于进行常规数学计算非常有用,但这并不稀罕。毕竟,人类一直在开发计算的机器,远在公元元年之前,就有了日本和巴比伦的算盘,以及神秘的希腊安提凯希拉机械装置。[1]
1700550156
1700550157 令人耳目一新的是新式数字化电脑的编程能力,也就是让它们执行任意复杂的指令。[2]正如我们在前一章所看到的那样,电脑程序是执行算法的理想选择,它们是用于完成任务的精确的、按部就班的指令。但许多学科领域中的卓越思想家很快就开始尝试让这种新机器做更多事情,而不仅仅是“萧规曹随”。这些先驱想要创建一个自主的软硬件组合,换句话说,它可以和人类一样进行推理,从而变成人工智能。
1700550158
1700550159 分叉的人工智能
1700550160
1700550161 达特茅斯学院的数学教授约翰·麦卡锡(John McCarthy)将人工智能定义为“制造智能机器的科学与工程”。他于1956年在校园举办了第一次专题研讨会。几年之后,该领域最大、最为持久的争论开始了。要了解它本身及其重要性,我们可以考虑小孩子学习语言的方式与大多数成年人学习第二种语言的方式之间的区别。
1700550162
1700550163 本质上,孩子们通过倾听学习一门语言。他们听周围的人说话,吸收一些组成语言的词语和规则,然后在某个时间开始说出自己的话。他们说错时得到反馈和纠正,最终,他们变得善于处理用人的口吻说话这么一件困难的事情。
1700550164
1700550165 成人学习者则知道这件事有多难。当他们开始掌握第二种语言时,马上会面对一堆规则:把代词放在句子的什么地方,用什么介词,动词如何变化,名词是否有性别之分,如果是的话,又有多少,如何区分主体和对象,以便我们知道是狗咬人还是人咬狗,等等。记忆词汇很难,而使大多数成人语言学习者咬牙切齿的,是诸多复杂的、偶尔不一致的规则。
1700550166
1700550167 幼儿牙牙学语不需要明确的规则指导。[3]大多数成年人不能在没有规则的情况下学习。当然,这两种方法有一些重叠,很多孩子最终会修语言课,而大人们也会耳熟能详,但两者毕竟截然不同。幼儿的大脑专门用来学习语言:他们用统计原理来辨别语言模式。[4]例如当妈妈谈论自己时,她用“I”作为主语,并把它放在一句话的开头,她用“me”作为宾语并放在后面。大人的大脑是不同的,因此他们在学习新的语言时通常明确地学习规则。
1700550168
1700550169 与以上对比类似,早期的人工智能社区分为两个阵营。一个追求所谓基于规则的,或者说符号型人工智能,[5]另一个则建立模式识别的统计系统。前者试图以成人学习第二语言的方式发展人工智能,后者试图使人工智能的发展与儿童学习第一语言的方式大致相同。
1700550170
1700550171 一开始,符号型的方法似乎占主导地位。例如,在1956年达特茅斯会议上,艾伦·纽维尔(Allen Newell)、J. C. 肖(J. C. Shaw)和未来的诺贝尔奖得主赫伯特·西蒙(Herbert Simon)演示了他们的“逻辑理论家”程序,它使用形式逻辑的规则自动地证明数学定理。该程序证明了阿尔弗雷德·诺斯·怀特海(Alfred North Whitehead)和伯特兰·罗素(Bertrand Russell)在数学基础方面的里程碑之作《数学原理》(Principia Mathematica)第二章中的38个定理。事实上,关于“逻辑理论家”的一个证明比原书优美很多,引来了罗素本人的“愉快回应”。西蒙宣称他和同事“发明了一台思维机器”。
1700550172
1700550173 然而,其他的挑战使基于规则的方法捉襟见肘。语音识别、图像分类、语言翻译等领域的数十年研究结果并不令人满意。这些领域取得的最好结果与人类的表现仍相距甚远,最糟糕的结果则给人留下了很坏的印象。例如,据一本1979年的逸事集记载,研究人员对“英译俄”翻译程序输入“心有余而力不足”这句话。程序给出的俄语翻译却意为“威士忌不错,但肉坏了”。也许这故事是杜撰的,但它并不夸张。作为一个群体,符号型人工智能产生的结果使人伤感困惑,以至20世纪80年代末,主要的企业和政府的研究资助来源枯竭,“人工智能的冬季”降临在这一领域。
1700550174
1700550175 无解的规则
1700550176
1700550177 是什么使符号型人工智能败绩累累呢?有两个主要障碍。其中一个对这一领域构成了严重挑战,而另一个显然是无法逾越的。首先,简单地说,如成人语言学习者所知,世上有很多规则,了解大多数规则并按规则行事通常是不够的。相反,人必须掌握几乎所有规则,才能有好的表现。一个语法正确率为80%的句子可能很可笑,甚至让人完全无法理解。
1700550178
1700550179 规则中还有规则。例如在英文句子中,知道形容词通常放在名词之前是不够的。正如马克·福赛思(Mark Forsyth)在其《口才元素》(The Elements of Eloquence)一书中所言:“英文的形容词绝对必须按照这个顺序:意见—大小—年代—形状—颜色—来源—材料—目的,再跟着名词。因此,你可以有一把可爱的小的老式的长方形的绿色的法国白银刀,但是,如果你稍稍弄错用词顺序,听起来就会很怪。每个说英语的人都使用这个规则,但几乎没人把它写出来,这真是一件奇怪的事情。”
1700550180
1700550181 此外,我们所处的物质世界和精神世界做不到只服从一种规则。椅子有腿,但当它有底座或软座,又或者它挂在天花板时则是例外。在2002年,两名男子不能在美国结婚,但2015年他们就可以这样做了。松鼠不能高飞,但那些滑翔飞行的除外。在英语中,否定加否定可以变成肯定,比如说“她从未不开朗”,但肯定加肯定永远不会变成否定。是的,就是这样。
1700550182
1700550183 为语言、家具等复杂事物的所有相关规则编码,输入电脑系统,然后让系统做些有用的事,这类尝试大多不成功。电脑科学家恩内斯特·戴维斯(Ernest Davis)和神经科学家加里·马库斯写道:“截至2014年,很少有商业化的系统在自动化常识推理方面有重大应用……还没人造出一个令人满意的常识推理器。”如上一章所述,常识有偏见、有错漏,但即便如此,对于绝大多数人来说它已经做得很棒了,它引领我们通过了世上纷繁复杂的考验。我们还没有设计出可以了解世界如何实际运行、人类自己的生物系统1又如何工作的符号型数字化系统。我们的系统越来越精于狭义的人工智能,如围棋、图像识别等特定领域,但是我们还远未实现DeepMind共同创始人谢恩·莱格(Shane Legg)所说的通用人工智能,即未能将智能应用于各种意想不到的问题。
1700550184
1700550185 又见波兰尼悖论
1700550186
1700550187 戴维斯和马库斯讨论了建立以上系统的最大障碍:“进行常识推理时,人们……借鉴的是……基本上无法自省的推理过程。”换句话说,人类经由多如牛毛的规则而驾驭自如的认知工作,其实不间断地体现着波兰尼悖论,也就是“我们所知的多于我们所能说的”。如第一章所述,直到最近,这一悖论使任何人都无法开发可以像人类顶尖高手一样下围棋的软件。我们必须谨记这一悖论随处可见。在很多重要的情况下,我们根本就不知道,也无法知道自己正在用什么规则来做对某些事。
1700550188
1700550189 这似乎是任何自动化或人工智能的绝对障碍。如果包括人类本身在内,地球上没有实体知道人类成就某事的规则,那么我们又如何创建一个基于规则的系统,或者说创建任何电脑系统,然后用它来模拟这些成就?波兰尼悖论似乎对可以自动化的人类工作类型设置了极大限制。正如我们麻省理工学院的同事、经济学家戴维·奥托(David Autor)所说:“电脑对人的替代范围是有限的,因为一个人能够意会很多任务,做起来也毫不费劲儿,电脑程序和其他人却不能确切表述相关的规则或程序。”
1700550190
1700550191 机器学习
1700550192
1700550193 人工智能研究者的另一个主要阵营——避开符号型方法的阵营,自20世纪50年代末以来一直在尝试攻克波兰尼悖论,其方法就是建立用小孩子学语言的方式学任务的系统,要点是经验、重复以及获取反馈。这些学者开创了机器学习领域,这恰恰体现了该阵营所做的事情。
1700550194
1700550195 以这种方式学习的首批数字化机器之一,就是美国海军资助的“感知器”(Perceptron),它是一台思考和学习的机器,由康奈尔航空实验室的科学家弗兰克·罗森布拉特(Frank Rosenblatt)领衔开发。“感知器”于1957年首次亮相,其目标是能够将看到的东西分类,例如区分狗类与猫类。为此,它被设置成有点儿像缩微版大脑的样子。
1700550196
1700550197 我们大脑中的大约1 000亿个神经元并没有以任何整齐的方式排列。相反,它们是深度关联的:典型的人类神经元从多达1万个的相邻神经元获取输入或信息,然后将输出发送给数目大致相等的神经元。每当足够的输入发出足够强的电信号时,神经元就将自己的信号发送到其所有的输出。在这里,“足够”和“足够强”的定义随着时间的推移而变化,它们取决于反馈以及重要性,也就是神经元给予其每个输入的权重。透过这个奇怪、复杂、不断展开的过程,产生了记忆、技能、系统1和系统2、思想火花和认知偏见,以及其他所有的脑力活动。
[ 上一页 ]  [ :1.700550148e+09 ]  [ 下一页 ]