1700944015
物理学的困惑 第九章 第二次革命
1700944016
1700944017
弦论最初提出来,是为了统一自然的所有粒子和力。但经过1984年革命以来的10年研究,发生了意想不到的事情。这个本以为统一的理论分裂成了许多不同的理论:10维空间里的5个和谐的超弦理论,外加不同卷曲维下的几百万个不同形式的理论。十几年过去了,我们现在明白了弦论本身正需要统一。
1700944018
1700944019
第二次超弦革命发生在1995年,它正是那样的一场统一运动。革命的起因通常认为是那年3月威藤在洛杉矶弦论会议上的一个讲话,他提出了一个统一它们的设想。其实他并没有拿出一个新统一的超弦理论,而只是说存在那样的理论,它会有哪些特征。威藤的建议是基于最近的系列发现,它们揭示了弦论的一些新面目,极大增进了我们的理解。那些发现还揭示了规范理论和广义相对论之间更多的共性和联系,进而用它们统一了弦理论。这些进步(其中有的是现代理论物理学史上前所未有的)最终赢得了很多怀疑者,也包括我。起初,5个和谐的理论似乎描述了不同的世界,但到90年代中期,我们开始明白它们并不像表面那么不同。
1700944020
1700944021
如果出现了两种不同的方式来看同一个现象,我们就说它们有对偶性。分别让一对夫妻给你讲他们的故事,他们的说法会不同,但每个重要事件都能相互得到印证。和他们谈话多了,你就能指出两人说的故事有什么不同和联系。例如,丈夫觉得妻子过于自信,这正好印证了妻子抱怨丈夫太懦弱。我们可以说,两个人的话是互为对偶的。
1700944022
1700944023
弦理论家在寻找5个理论的相互关系时,开始运用不同类型的对偶性。有些对偶性是精确的:两个理论不是真的不同,只是描述同一现象的两种不同方式。其他对偶性是近似的,在这些情形,两个理论确实不同,但一个理论的现象类似于另一个理论的现象,这样就可以通过研究一个理论的某些特征来近似地了解另一个理论。
1700944024
1700944025
5个超弦理论中最简单的对偶性叫T对偶。“T”代表“拓扑的”,因为这种对偶性与空间的拓扑有关。52当某个紧化的空间维是圆时,就出现这种对偶。这时,弦可以缠绕在圆周上。实际上,它可以缠绕很多圈(图9-1)。弦缠绕圆周的圈数叫缠绕数。
1700944026
1700944027
1700944028
1700944029
1700944030
图9-1 弦可以缠绕一个隐藏维。在这里的情形,空间是1维的,隐藏维是个小圆。图中的弦分别缠绕零圈、一圈和两圈
1700944031
1700944032
另一个数度量弦如何振动。这种弦和钢琴或吉他的弦一样,也有泛音,可以用自然数标记不同振动的音阶。T对偶就是两个缠绕着圆的弦理论之间的关系。两个圆的半径不同,但相互关联;一个等于另一个的倒数(以弦长为单位)。在这种情形,一个弦理论的缠绕数完全表现为另一个弦理论的振动音阶。这种对偶性出现在5个弦理论的某些对之间。它们看似从不同的理论出发,但把它们的弦缠绕在圆圈上时,就成为同一个理论了。
1700944033
1700944034
还有第二类对偶,人们也猜想它是精确的,尽管还没有证明。我们在第七章讲过,每个弦理论都有一个数决定弦分裂或结合的几率。这是弦的耦合常数,约定以字母g标记。当g很小时,弦分裂或结合的几率就小,我们就说相互作用弱。当g很大时,弦随时都在分裂或结合,我们就说相互作用强。
1700944035
1700944036
于是,两个理论又可能以下面的方式发生联系:每个理论都有耦合常数g。但是,当一个理论的g等于另一个理论的1/g时,两个理论的表现就会是一样的。这叫S对偶(S代表strong-weak,强弱)。如果g小,意味着弦相互作用弱,而1/g大,所以另一个理论中的弦相互作用强。
1700944037
1700944038
耦合常数不同的两个弦理论怎么可能有相同的行为呢?难道我们连弦分裂或结合的几率是大还是小都说不准了吗?只要知道了弦是什么,我们是能说清楚的。但事实是,在S对偶的情形下,我们相信两个理论拥有的弦比我们想象的更多。
1700944039
1700944040
弦的增生是一种常见但少有人认识的所谓“突现”现象的一个例子,“突现”一词所描述的是从巨大的复杂系统中生出新的性质。我们也许知道基本粒子满足的定律,但许多粒子束缚在一起时,各种新现象就会涌现出来。质子束、中子束和电子束可以结合生成新的金属;同样数目的其他东西可以结合生成生命的细胞。不论金属还是细胞,都不过是质子、中子和电子的集合体。那么,我们该如何来描述是什么让金属成为金属,细胞成为细胞的呢?区别二者的性质就叫突现性质。
1700944041
1700944042
看一个例子:金属最简单的行为大概就是振动;如果你敲击金属棒的一端,就会有声波从它穿过。金属振动的频率就是一种突现性质,声波在金属内传播的速度当然也是。想想量子力学中的波粒对偶,意思是每个波都伴随着一个粒子。反过来也是对的:每个粒子都伴随着一个波,也包括伴随着在金属中传播的声波的粒子,它叫声子。
1700944043
1700944044
声子不是基本粒子,当然也不是构成金属的粒子,因为它只能凭借构成金属的大量粒子的集合运动才能存在。但声子仍然还是粒子。它具有粒子的一切性质。它有质量,有动量,也携带能量。它的行为和量子力学规定的任何粒子应有的行为是一样的。我们说声子是突现粒子。
1700944045
1700944046
我们相信,弦也会发生这样的事情。当相互作用强时,有许许多多弦在分裂、结合,因而很难分辨哪根弦发生了什么。于是我们寻求大量弦的集合的某些简单的突现性质——通过那些性质来认识发生了什么。结果真的出现了有趣的事情。正如一束粒子的振动可以表现得像一个简单的粒子(声子),从大量弦的集合运动中也生出一根新弦,我们称它为突现弦。
1700944047
1700944048
突现弦的行为与普通的弦(我们不妨称其为基本弦)恰好相反。相互作用的基本弦越多,突现弦就越少。说得更准确一点儿:假如两根基本弦相互作用的几率正比于弦耦合常数g,那么在某些情形下,突现弦发生相互作用的几率就正比于1/g。
1700944049
1700944050
怎么区分基本弦与突现弦呢?事实证明区分不了——至少在某些情形是这样的。实际上,我们可以转换图像,把突现弦看作基本弦。那是强弱对偶性的一个奇异技巧。那就像我们在考虑金属时,把声子(声波的量子)看成基本的,而把构成金属的所有质子、中子和电子看成由声子构成的突现粒子。
1700944051
1700944052
和T对偶一样,这种强弱对偶也关联着5个弦理论中的某些对。唯一的问题是,这种关系仅适用于理论的某些状态抑或有着更深层的意义?这之所以成为问题,是因为我们必须研究某些理论对的状态——特定的对称性约束下的状态,才可能揭示那种关系。否则,我们就不能充分控制计算而得出好的结果。
1700944053
1700944054
接着,理论家们面临着两条可能的路线。乐观的一派——那时多数弦理论家都很乐观——走得很远,他们在证明结果的基础上,进而猜想他们在理论对中检验的特殊对称状态之间的关系,可以扩展到所有5个理论。就是说,他们假定即使没有特殊对称性,也总会存在突现弦,而那些突现弦也总是表现为其他理论中的基本弦。这意味着S对偶不仅联系着理论的某些方面,而且证明了它们的完全等价。
1700944055
1700944056
另一方面,少数悲观者担心5个弦理论也许真的彼此不同。在他们看来,哪怕只有在很少的情形下,一个理论的突现弦能像其他理论的基本弦,也是相当了不起的了。但他们意识到,这种事情即使在所有理论都不同的时候也可能是真的。
1700944057
1700944058
很多人曾观望(现在仍然在观望)乐观派与悲观派的对错。如果乐观派对了,那么原来的所有5个超弦理论都不过是同一个理论的不同描述形式。如果悲观派对了,那么它们真是不同的理论,因而没有唯一性,没有基本理论。只要我们不知道强弱对偶是近似的还是精确的,我们就不能知道弦理论是不是唯一的。
1700944059
1700944060
支持乐观派观点的一个证据是,相似的对偶性也存在于比弦理论更简单也更容易理解的理论中。有一种形式的杨-米尔斯理论,所谓“N=4超杨-米尔斯理论”,就是那样一个例子,它有着尽可能多的超对称性。为简单起见,我们将称它为最大超理论。有很好的证据表明这个理论具有某种形式的S对偶。它的行为大致是这样的:理论有大量带电荷的粒子,也有某些带磁荷的突现粒子。在通常情况下没有磁荷而只有磁极。每个磁体有两个磁极,分别叫南极和北极。但在特殊情况下,可以有彼此独立运动的磁极——它们就是著名的磁单极。最大超理论发生的情况是,存在某种电荷与磁单极交换的对称性。当两者交换时,如果将电荷值改变为原来数值的倒数,则理论描述的物理不会有任何改变。最大超理论是一个非同寻常的理论,我们很快就会看到,它将在第二次超弦革命中发挥巨大作用。不过,既然我们对不同的对偶性已经有了一点认识,我可以来解释威藤在洛杉矶的著名讲话中讨论的那个猜想了。
1700944061
1700944062
我说过,威藤讲话的关键思想是5个和谐的超弦理论其实是同一个理论。但那个单独的理论本来是什么呢?威藤没说,不过他确实描述了一个大胆的猜想,认为那个统一5个超弦理论的理论需要再多一维,这样空间就有10维,而时空是11维。53
1700944063
[
上一页 ]
[ :1.700944014e+09 ]
[
下一页 ]