打字猴:1.700944606e+09
1700944606 物理学的困惑 [:1700942621]
1700944607 物理学的困惑 第三篇 弦论之外
1700944608
1700944609 物理学的困惑 [:1700942622]
1700944610 第十三章 真实世界的惊奇
1700944611
1700944612 希腊哲学家赫拉克利特给我们留下一句美妙的格言:自然喜欢隐藏。这真是千真万确的。赫拉克利特没有办法看见原子。不论他的追随者们对原子如何玄想,要看到一个原子,已经远远超出了他们所能想象的技术水平。如今,理论家们大大发挥了自然不可预测的倾向。如果说自然真是超对称的或具有更高的空间维,那么她已经将它很好地隐藏起来了。
1700944613
1700944614 但有时候恰好相反。关键的东西就摆在我们面前,等着大家去看。躲过赫拉克利特的视线的东西,在我们今天看来是很容易觉察的,已经习以为常了,如惯性原理或自由落体的不变加速度。伽利略关于地球运动的观测也用不着望远镜或机械钟。在我看来,它们早在赫拉克利特时代就应该发现了。他只需要提出正确的问题。
1700944615
1700944616 于是,当我们哀叹难以检验弦理论背后的思想时,我们应该问问哪些东西隐藏起来了。在科学史上,有许多发现令科学家惊讶,因为它们出乎理论的预料。今天是不是也有理论家不曾寻求过、理论也不曾预言过的东西呢?它们也许能将物理学引向一个有趣的方向。会不会我们已经看到了它们,却因为它们的存在有碍我们的理论过程而被忽略了呢?
1700944617
1700944618 答案是肯定的。最近有几个实验结果预示着多数弦理论家和粒子物理学家都未曾想到的新现象。这些现象都还没完全确定。有几个情形的结果很可靠,但解释有分歧;其他情形的结果则因为过于新奇而没得到大家的认可。83不过还是值得在这儿描述一下,因为假如其中任何一个线索成了真正的发现,那么基础物理学将显现任何形式的弦理论都没预言并难以与之相容的重要特征。这样,其他方法将别无选择地成为基本方法。
1700944619
1700944620 我们从宇宙学常数说起,一般认为它代表了加速宇宙膨胀的暗能量。第十章说过,暗能量是弦理论和多数其他理论所不曾预料的,我们也不知道如何确定它的数值。很多人为它苦苦思索了多年,但还是一片茫然。我也不知道答案,不过我有一个设想。我们暂且不考虑用已知的知识来解释宇宙学常数的值。假如我们不能凭已知的东西来解释某个现象,这大概就预示着我们需要寻找新的东西。也许宇宙学常数就是某个新东西的征兆,在那种情形它大概还有别的表现。我们该如何去寻找它们、认识它们呢?
1700944621
1700944622 答案很简单,因为普遍现象终归是简单的。物理学中的力只要几个数字来刻画——例如,力的传播距离和决定其强度的力荷。刻画宇宙学常数的是尺度,即它令宇宙卷曲的距离尺度。我们称这个尺度为R,大约等于10亿光年(即1027 cm)。84宇宙学常数的怪异在于它的尺度远大于物理学的其他尺度。R是原子核大小的1040倍,普朗克尺度(大约是质子大小的10-20)的1060倍。所以人们自然想知道尺度R是否代表了某种全新的物理。为此,寻求发生在同样巨大尺度的现象,应该是一个好办法。
1700944623
1700944624 宇宙学常数的尺度上发生了什么吗?我们从宇宙学本身说起。我们最精确的宇宙学观测是对宇宙微波背景辐射的测量。这是大爆炸留下的辐射,它从遥远太空的各个方向到达我们。它纯粹是热辐射——就是说,它是随机的。随着宇宙的膨胀,它已经冷却下来了,现在大约是2.7K。这个温度在整个天空都是非常均匀的,只有大约十万分之几的涨落(图13-1上)。涨落的状态为极早期宇宙提供了重要信息。
1700944625
1700944626 过去几十年里,微波背景的温度涨落已经通过卫星、气球探测器和地面探测器勾画出来了。为了理解这些实验的测量结果,可以将涨落看作宇宙早期的声波。接着再看不同波长的涨落有多大。结果是一幅图像,如图13-1下,它告诉我们不同的波长所具有的能量。
1700944627
1700944628
1700944629
1700944630
1700944631 图13-1上:从微波频率看到的天空。来自我们银河系内部的信号已经被清除了,留下的宇宙图像是它刚好冷却到电子和质子结合成氢的时候。下:上图在不同波长的能量分布。点代表WMAP和其他来源的数据,曲线是标准宇宙模型预言的拟合
1700944632
1700944633 图131有一个主峰,跟着几个小峰。这些峰值的发现是当代科学的一大胜利。根据宇宙学家的解读,它们说明早期宇宙的物质处于共振状态,就像鼓槌或长笛。乐器振动的波长正比于乐器的大小,宇宙也是如此。共振态的波长向我们揭示了宇宙第一次透明时的大小:那是大爆炸后30万年左右,原初的等离子“退化”或“解耦”成为分离的物质和能量,微波背景变得可见了。这些观测对确定宇宙学模型的参数是极端重要的。
1700944634
1700944635 我们从数据看到的另一个特征是最大波长的能量很小。这也许只是统计涨落,因为它包含的数据量比较小。但假如那不是统计的原因,就可以解释为一种截断,超过它就很少有激发的模式了。有趣的是,这个截断就在与宇宙学常数相关的尺度R。
1700944636
1700944637 从广为接受的极早期宇宙理论(即暴胀)的观点看,存在这样的截断是令人疑惑的。根据暴胀理论,宇宙在极端早期指数式地膨胀。暴胀解释了宇宙背景辐射的近似均匀性。它的解释是在于确证我们现在看到的宇宙各部分在宇宙还充满着等离子的时代可能就已经是因果关联的了。
1700944638
1700944639 理论还预言了宇宙微波背景的涨落,而它们曾被假定是暴胀时期的量子效应残余。不确定性原理意味着在暴胀宇宙的能量中起主导作用的场应该是涨落的,这些涨落都印在了空间的几何中。当宇宙指数式膨胀时,它们持续涨落着,在宇宙透明时产生的辐射温度也跟着涨落。
1700944640
1700944641 暴胀可能生成一个具有相对均匀性质的巨大宇宙区域。根据尺度的简单论证,这个区域比可见区域要大许多个数量级。如果暴胀恰好在那个区域和我们现在看到的区域一样大的时刻停下来,那么在暴胀物理学中一定存在某个参数,才可能选择一个特殊的停止时刻,那正好就是我们的时代。但这几乎是不可能的,因为暴胀发生的时候,宇宙的温度比今天最热的恒星中心的温度还高10到20个数量级。因此,暴胀的定律一定是不同的,只能主导那种极端的条件下的物理。关于暴胀的定律有很多假设,但没有一个涉及100亿年的时间尺度。换句话说,当前的宇宙学常数值似乎不可能与引起暴胀的物理学有任何关系。
1700944642
1700944643 因此,如果说暴胀产生了我们看到的均匀宇宙,那么它很可能产生了一个在更大的尺度上均匀的宇宙。这意味着暴胀产生的涨落模式,不论我们看得多远,都应该一直延续下去。如果你能看到观测宇宙以外的地方,你仍然应该看到宇宙微波背景的涨落。但数据表明涨落在尺度R就可能停止了。
1700944644
1700944645 实际上,宇宙学家在考察微波背景的大尺度涨落模式时,还发现了更多的疑问。宇宙学家们普遍相信,宇宙在最大尺度上是对称的——就是说,任何方向都是彼此相同的。看到的情形却并非如此。辐射在那些大尺度上的模式不是对称的,而存在一个特殊的方向。(宇宙学家兰德(Kate Land)和马古维约(Joao Magueiyo)称它是“魔轴”。)85还没有人为这个现象提出过合理的解释。
1700944646
1700944647 这些观测之所以引发争议,是因为它们完全违背了我们基于暴胀的期待。因为暴胀解释了很多宇宙学问题,很多谨慎的科学家怀疑微波数据可能有错。实际上,测量完全有可能是错误的。数据发表之前经过了大量仔细的分析,其中之一就是剔除已知来自我们星系的辐射。这一步可能做得不对,但熟悉数据分析过程的科学家几乎都不相信会出现那种情况。还有一种可能是,我们的观测只不过是统计异常。尺度R的某个波长的振动占据了大部分空间——大约60度;于是我们只看到了很少的波长,因而只有很少的数据,所以我们看到的可能只是随机的统计涨落。如果说存在某个特殊的方向是统计反常,估计它出现的几率小于1%。86但人们大概更容易相信那个不太可能的运气,而不愿相信暴胀预言的失败。
1700944648
1700944649 这些问题眼下还没有解决。不过对现在来说,我们知道这一点就够了:我们在R尺度寻找奇异的物理现象,果然找到了。
1700944650
1700944651 还有与R尺度相关的其他现象吗?我们可以结合R和其他自然常数,看看在引出的新尺度上会发生什么。举一个例子,考虑R除以光速:R/c。这是一个时间量,大约是宇宙今天的年龄。它的倒数c/R是一个频率——“音调”非常低,相当于宇宙的一生才振动一次。
1700944652
1700944653 下一个最简单的量是c2/R,是一个加速度。它其实是宇宙膨胀的加速度——就是说,是由宇宙学常数引起的加速度。然而,它和寻常的加速度相比却小得可怜:10-8(cm/s2)。看一只在地板上爬行的小虫子,它大约每秒爬10cm。假如它在一只狗的一生时间里将速度加倍,那么它的加速度就是C2/R,当然是很小的。
1700944654
1700944655 不过我们可以假定存在一种新的能解释宇宙学常数值的普遍现象。根据尺度相当的事实,新现象应该也能影响任何其他具有如此小加速度的运动。于是,每当我们看到任何事物以这样的小加速度运动,就可以期待看到新的现象。事情于是变得趣味盎然了。我们确实知道一些加速如此缓慢的事物。一个例子就是绕着典型星系旋转的典型恒星。一个星系环绕另一个星系的加速甚至更慢。那么,这样的小加速度的恒星轨道与更大加速度的恒星轨道是不是有什么不同的地方呢?答案是肯定的,我们确实看到了,而且差别很大。这就是暗物质问题。
[ 上一页 ]  [ :1.700944606e+09 ]  [ 下一页 ]