1701740767
反实在论的危险
1701740768
1701740769
反实在论的立场可能被用错地方。轻率地断言现在不为我们所知的东西,将来我们也不会知道,这种观点总是危险的。1835年,法国哲学家、数学家孔德(Auguste Comte)[3]预言,星体的化学成分必然是人类无法认知的。他写道:“实证主义哲学的全部领域建立于我们的太阳系的范围之内。”
1701740770
1701740771
孔德的观点不仅错误,而且落伍。在他做出以上断言时,物理学家正在猜测约瑟夫·冯·夫琅和费(Joseph Von Fraunhofer)在太阳光谱中发现的神奇的暗条纹的含义。一代人之后,古斯塔夫·基尔霍夫(Gustav Kirchhoff)和罗伯特·本生(Robert Bunsen)认识到,这些条纹是由太阳中的化学元素形成的。把分光镜对准远方的星体,同样可以揭示出星体的化学构成。
1701740772
1701740773
在关于反实在论的讨论中,经常有人提到“黑洞”这个科学概念。有时候我们会遇到这种说法:关于黑洞的内部预言是不可验证的,因此,根据反实在论的主张,这类预言是无意义的。严格说来,这种说法不正确,讨论一下为什么不正确可能是有益的。
1701740774
1701740775
黑洞是一个空间区域,由于引力场极其强大,以至于进入黑洞的任何东西都不能逃离。“不能”是指绝对不能、肯定不能,任何形态的物质和能量都不能逃出。由于信息必须通过物质或能量传递,所以,即使信息也无法从黑洞中逃逸。
1701740776
1701740777
请考虑这个问题:黑洞内部的人不能向我们发出无线电信号,也不能把消息装在一只瓶子里抛出来,我们在黑洞外面永远无法获得任何与黑洞内部的事态直接相关的信息。既然如此,谈论黑洞内部发生的事情有什么意义吗?
1701740778
1701740779
黑洞是爱因斯坦引力理论(广义相对论)的一个预言。一方面,这个理论确实预言了黑洞的内部情况,另一方面,这个理论实际上断定了这些预言永远无法得到检验。一旦足够大的质量聚集于足够小的空间中,就会产生一个黑洞。当一颗大星体(体积大约是太阳的2倍或更大)耗尽了热核反应的燃料并开始坍缩,它自身的引力将把自己压缩得越来越小。它收缩得越小,它的引力场就越密集。一旦引力超过一个临界点,就不再有任何为物理学所知的力量可以抗拒引力。在重压之下,原子已不复存在,星体收缩为一个点(在任何人看来都是如此)。
1701740780
1701740781
虽然星体消失了,它的引力却还在。它留下了一个强大的引力场——黑洞。一个黑洞的“边界”被称为“视界”。任何东西只要进入这个球形区域,必定有去无回,这是一条实际意义上的不归路。
1701740782
1701740783
黑洞应当是球形的,通常周长只有几英里;它的颜色应当是完全、绝对的黑色;它会将一切位于它后面的物体的光罩住,就像是一块玻璃里的气泡。质量为太阳的2倍的恒星完全坍缩形成的典型的恒星型黑洞,有效直径为12公里(7英里)。这个有效直径只是一个虚构值。如果想测量一个黑洞的直径(或半径),我们将不得不把一条卷尺(或其他测量工具)伸到黑洞内部,任何观测者都无法向外界报告测量结果。此外,从理论上说,穿越弯曲空间的直径是无限长的。我们所能做的不过是测量黑洞的周长。从理论上说,我们可以用一条卷尺环绕黑洞,紧贴在视界之外,用这种方法测量其周长。对于外部世界的观察者来说,可用周长除以圆周率得到有效直径,即黑洞可能占据的空间大小的测量值。
1701740784
1701740786
黑洞探测器
1701740787
1701740788
我们来讨论几种从黑洞中获取信息的方案。发射一架NASA(美国航空航天局)风格的探测器进入黑洞,让探测器用无线电传回数据——这不是好主意。无线电波和可见光同属于电磁辐射。无线电信号和手电筒的光柱一样,不能从黑洞里传出。
1701740789
1701740790
另一个容易否决的方案是发射火箭进入黑洞,而后令其返回。一切行星和恒星都有一个逃逸速度,火箭为了脱离星体而不被吸回去,其飞行速度必须超过逃逸速度。然而,黑洞的逃逸速度等于光速。光速是宇宙中物质速度的极限,没有任何东西能超过光速。火箭方案的问题是火箭不可能从黑洞中逃脱。
1701740791
1701740792
我们可以设想制造一部类似于深海潜水器的探测器,为探测器配备探照灯和照相机,通过一根绝对不会断裂的缆绳将它送入黑洞。缆绳固定于——嗯,固定于一个极其巨大而结实的东西上。让探测器拍下照片,然后把它拉出来。
1701740793
1701740794
这个方案行不通。一旦缆绳的原子进入视界,就没有任何物理力可以把它再拉出来,把物质联结起来的电磁力也做不到。宇宙中既然存在黑洞,就不可能有所谓的“绝对不会断裂的缆绳”。
1701740795
1701740796
于是我们承认,任何进入黑洞的东西都无法再出来。但是,这并不必然意味着关于黑洞内部的预言是不可验证的。从理论上说,一个人可以进入黑洞参观一下。他永远也不能再出来,并且他在里面也活不了多久。此外,这需要一个非常大的黑洞,否则,这个观察者在穿越视界时就会死去。
1701740797
1701740798
黑洞周围的空间扭曲呈现为强烈的潮汐力。这种力量与在地球上造成潮汐的力量属于同一类型。月球的引力倾向于把地球拉长压扁。岩石受这种力的影响小于水,所以我们可以观察到海洋中的潮汐现象。
1701740799
1701740800
在黑洞附近,这种奇异的潮汐力同样趋向于在潮汐的方向上拉伸对象,在另一个方向上压扁对象。设想你飘浮在太空中,你的脚指向一个黑洞,头朝向相反方向。潮汐力将沿着从头到脚的方向拉伸你,从两边压扁你。
1701740801
1701740802
同样的力将会作用于火箭或任何其他对象。如果黑洞的质量比太阳大几倍,那么视界处的力足以把人杀死,可能也足以摧毁由任何已知材料构成的同样大小的对象。没有人可以活着接近一个仅具有寻常尺寸的黑洞,更别说进入了。
1701740803
1701740804
黑洞的大小各不相同。黑洞的大小(更确切地说,是它的边界——视界的大小)取决于形成黑洞的对象的质量。有趣的是,形成黑洞的对象质量越大,视界处的潮汐力越小。
1701740805
1701740806
根据广义相对论,视界处的潮汐力与黑洞的质量的平方成反比。据估计,质量为太阳1 000倍左右的黑洞,其视界处的潮汐力是人体所能承受的。已知的星体中还没有质量这么大的,但是据猜想,质量比这大得多的黑洞是存在的。
1701740807
1701740808
1987年,天文学家道格拉斯·瑞奇斯通(Douglas Richstone)和艾伦·德雷斯勒(Alan Dressler)报告说,在仙女座星系及其卫星星系M32中发现了可能存在巨大黑洞的证据。他们发现,在接近星系的中心处,星体旋转的速度比预期值快很多。如果假定这些星体围绕着一个质量大约为太阳的7 000万倍、不可见的高密度对象旋转,则这种情况可以得到解释。在一切已知的或理论上的对象中,符合条件的只能是黑洞。此外,更间接的证据表明,一个类似的黑洞可能存在于我们自己的星系的中心。对于这么大的黑洞来说,视界处的潮汐力将比较柔和——力量仅为达到太阳质量1 000倍的黑洞的50亿分之一。一个人在穿越一个巨大的黑洞的视界时,可以轻松地活着进去,并且深入一段距离。
1701740809
1701740810
黑洞的中心处是一个“奇点”,奇点处的时空无限密集、无限弯曲。穿过视界的任何对象都会被吸到奇点处。对于观察者来说,无论如何,到达奇点就是终点——任何身体和器械都无法抵抗无穷大的潮汐力。
1701740811
1701740812
到达奇点所需的时间取决于黑洞的大小。这个时间等于1.54×10–5乘以黑洞质量再除以太阳质量。[这个时间是从下落的观察者的角度估算的,对于其他观察者来说结论不同。在一个远离黑洞的、静止的观察者看来,下落过程(不夸张地说)将永远进行下去。这是围绕黑洞的时空严重扭曲所产生的另一个效应。]
1701740813
1701740814
对于质量为太阳两倍的典型的黑洞来说,从视界到奇点的旅行大约需要3×10–5秒。对于质量为太阳1 000倍的典型的黑洞来说,下落的最长时间将是0.0 154秒。在这两种情况下,观察者都将在穿越视界时死去。
1701740815
[
上一页 ]
[ :1.701740766e+09 ]
[
下一页 ]