1700264115
1700264116
V Borowitzka, L. J.; Kessly, D. S.; Brown, A. D.(1977). The salt relations of Dunaliella.Archives of microbiology. 113(1–2): 131–138;Stryer, L.(1995).Biochemistry(4th ed.). New York - Basingstoke: W. H. Freeman and Company.
1700264117
1700264118
VI http://www.fao.org/news/story/en/item/197623/icode/.
1700264119
1700264120
VII Zuckerkandl, E.; Pauling, L.(1965). Molecules as documents of evolutionary history.Journal of Theoretical Biology, 8(2): 357–366.
1700264121
1700264122
VIII Woese, C. R.; Kandler, O.; Wheelis, M. L.(1990). Towards a natural system of organisms: proposal for the domains Ar chaea, Bacteria, and Eucarya.Proceedings of the National Academy of Sciences, 87(12): 4576–4579.
1700264123
1700264124
IX Archibald, J. M.(2008). The eocyte hypothesis and the origin of eukaryotic cells.Proceedings of the national academy ofsciences, 105(51): 20049–20050.
1700264125
1700264126
X Leipe, D. D.; Aravind, L.; Koonin, E. V.(1999). Did DNA replication evolve twice independently?Nucleic acids research, 27(17): 3389-3401.
1700264127
1700264128
XI Koonin, E. V.; Martin, W.(2005). On the origin of genomes and cells within inorganic compartments.Trends in genetics, 21(12): 647-654.
1700264129
1700264130
XII zhou, Qi; Jarvis, E.D.; Mirarab, S.; et al.(2014). Whole-genome analyses resolve early branches in the tree of life of modern birds.Science. 346(6215): 1320–1331.
1700264131
1700264132
XIII Margulis, L.(1981).Symbiosis in cell evolution. San Francisco, CA: W. H. Freeman.
1700264133
1700264134
XIV Gould, S.B.; Maier, Uwe-G; Martin, W. F.(2015). Protein import and the origin of red complex plastids.Current biology,25(12)
:R515-R521;McFadden, G. I.; van Dooren, G. G.(2004). Evolution: red algal genome afirms a common origin of all plastids.Current biology, 14(13): R514-6;Gould, S. B.; Waller, R. F.; McFadden, G. I.(2008). Plastid evolution.Annual reviewof plant biology, 59(1): 491–517.
1700264135
1700264136
XV Keeling, P. J.(2004). Diversity and evolutionary history of plastids and their hosts.American journal of botany, 91(10)
:1481-1493.
1700264137
1700264138
XVI Okamoto, N.; Inouye, Isao.(2005). A secondary symbiosis in progress?.Science. 310(5746): 287.
1700264139
1700264140
第三幕
1700264141
1700264142
第八章
1700264143
1700264144
I Berg, I. A.(2011). Ecological aspects of the distribution of diferent autotrophic CO2 fixation pathways.Applied and environmental microbiology, 77(6) 1925-1936.
1700264145
1700264146
II Ellis, R. J.(1979). Most abundant protein in the world.Trends in biochemical sciences, 4: 241–244.
1700264147
1700264148
III Fuchs, G.(2011). Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life?Annual review of microbiology, 65(1): 631–658; Hu, Yajing; Holden, J. F.(2006). Citric acid cycle in the hyperthermophilic archaeon Pyrobaculum islandicum grown autotrophically, heterotrophically, and mixotrophically with acetate.Journal of bacteriology, 188(12)
:4350–4355;Barbara, J.; Campbell, S.; Craig, C.(2004). Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents.Applied and environmental microbiology, 70(10): 6282-6289.
1700264149
1700264150
IV 关于奇异变形杆菌的三羧酸循环,参见:Alteri, C. J.; Himpsl, S. D.; Engstrom, M. D.; et al.(2012). Anaerobic respira tion using a complete oxidative TCA cycle drives multicellular swarming in proteus mirabilis.Mbio, 3(6): 17-17。
1700264151
1700264152
V 关于三羧酸循环在热力学和动力学上的优势,参见:Ebenhöh, O.; Heinrich, R.(2001). Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.Bulletin of Mathe matical Biology, 63(1): 21–55。
1700264153
1700264154
VI 关于三羧酸循环和逆三羧酸循环的无机催化,参见:Zubarev, D. Y.;Rappoport, D.; Aspuru-Guzik, A.(2015). Un certainty of prebiotic scenarios: The case of the non-enzymatic reverse tricarboxylic acid cycle.Scientific reports, 5(1)
:8009;Springsteen, G.; Yerabolu, J. R.; Nelson, J.; et al.(2018). Linked cycles of oxidative decarboxylation of glyoxylate as protometa bolic analogs of the citric acid cycle.Nature communications, 9(91);Muchowska, K. B.; Varma, S. J.; Chevallot-Beroux, E.; et al.(2017). Metals promote sequences of the reverse Krebs cycle.Nature ecology & evolution, 1(11): 1716–1721.
1700264155
1700264156
VII 关于黑烟囱上的绿硫菌,参见:Beatty, J. T.; Overmann, J.; Lince, M. T.; et al.(2005). An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent.Proceedings of the National Academy of Sciences, 102(26): 9306–9310; Martinez-Planells, A.; Arellano, J. B.; Borrego, C. M.; et al.(2002). Determination of the topography and biometry of chloro somes by atomic force microscopy.Photosynthesis research, 71(1–2): 83–90。
1700264157
1700264158
VIII 关于光化学催化的逆三羧酸循环实验,参见:Zhang, Xiang V.; Martin, S. T.(2006). Driving parts of krebs cycle in reverse through mineral photochemistry.Journal of the American Chemical Society, 128(50): 16032-16033.
1700264159
1700264160
IX 金属单质催化还原二氧化碳生成乙酰辅酶A路径产物的论文,参见:Varma, S. J.; Muchowska, K. B.; Chatelain,P.; et al. Native iron reduces CO₂ to intermediates and end-products of the acetyl-CoA pathway.Nature Ecology & Evolution, 2: 1019–1024。
1700264161
1700264162
第九章
1700264163
1700264164
I 数据依据CRC Handbook of Chemistry and Physics, 2009, pp.5-42, 90th ed., Lide。
[
上一页 ]
[ :1.700264115e+09 ]
[
下一页 ]