打字猴:1.700931385e+09
1700931385
1700931386
1700931387
1700931388
1700931389
1700931390 现在让系统逆向运转和前次同样长的时间。原来的历史会复原,硬币会回到初始点。不论你经过了多长时间,决定性定律总能保持良好的记忆,总能回到初始条件。为了检测信息守恒,你甚至不需要知道精确的定律,只要知道如何翻转它就行了。只要定律是决定性的,这个实验总是能行得通。但如果有随机性,实验就会失败,除非是一种非常微妙的随机性。
1700931391
1700931392 现在让我们回到爱因斯坦、玻尔、上帝和量子力学。爱因斯坦另一个更为著名的语录是“上帝是微妙的,但也没有心怀恶意”。我不知道是什么,促使他想到物理定律没有恶意。就我个人而言,尤其是随着年龄的增长,我偶尔会发现引力定律很有恶意。但是爱因斯坦关于微妙的说法是正确的。量子力学的定律非常微妙,以至于它们允许随机性、能量守恒和信息守恒共存。
1700931393
1700931394 考虑一个粒子:任何一种粒子都行,但光子是一个很好的选择。光子是由光源(例如激光)产生的,指向一个有着小孔的金属板。小孔后面是一个荧光屏,光子打在上面会闪光。
1700931395
1700931396
1700931397
1700931398
1700931399 经过一段时间之后,光子可能会穿过小孔,也可能会错过它而从障碍物上弹开。如果它穿过了小孔,就会撞在屏上,但不一定位于小孔的正对面。光子走的不是一条直线,当经过小孔时,它可能会接收到随机的脉冲。因此,闪光的最终位置是无法预测的。
1700931400
1700931401 现在移开荧光屏,再次做实验。一小段时间之后,光子或者会撞击到金属板上弹开,或者会经过小孔,然后随机地打在屏上。如果无法探测到光子,那么我们就不可能知道它在哪里,往哪个方向运动。
1700931402
1700931403
1700931404
1700931405
1700931406 但是,想象我们干预并反向地运用光子的运动定律。[39]如果我们使光子反向运行的时间与上面相同,那么我们希望得到什么呢?一个很显然的预期是,随机性(随机的逆向运行依然是随机的)会破坏光子回到初始位置的可能性。第二部分实验的随机性会复合第一部分的随机性,使得光子的运动变得更加不可预测。
1700931407
1700931408 然而答案更为微妙。在我解释之前,让我们简略地回到三面硬币的实验。在那种情况下,我们也在一个方向运行一个定律,接着反过来运行它。我漏掉了实验中的一个细节:在我们反向运行定律之前是否有人看过硬币呢?如果有人看过了,会产生什么样的差异呢?只要观看硬币时不使它翻动而进入到新的状态,就不会有丝毫的不同。这似乎不像是一个有说服力的条件,于是当有人看硬币时,我也会看到这枚硬币跳入空中并翻动。但是,在微妙的量子力学世界,观看某种东西而不影响它是不可能的。
1700931409
1700931410 以光子为例,当我们反向运行光子时,它会重新出现在原始位置吗?量子力学的随机性会破坏信息守恒吗?答案是令人感到不可思议的:它依赖于我们在干涉时是否观看过光子。关于“观看光子”,我所指的是确定它在哪里和往哪个方向运动。如果我们确实观看了,最终结果(反向运动之后)将会是随机的,信息守恒会失效。但是,如果我们忽略光子的位置,丝毫不去管它的位置和运动方向,而仅仅将定律反向运行,那么经过规定的一段时间之后,光子会神奇般的重新出现在它的原始位置。换句话说,尽管量子力学有它的不可预知性,然而它依然遵守信息守恒。无论上帝是否心怀恶意,他确实是微妙的。
1700931411
1700931412 从数学上来讲,反向运行物理定律完全是可能的。但是,真正做起来怎么样呢?即使对于最简单的系统,我也非常怀疑有人能够反向运行。然而,无论我们在实际中能够做到与否,量子力学的数学可逆性(物理学家称之为幺正性),对它自身的一致性极为重要。没有它,量子逻辑将无法保持完备。
1700931413
1700931414 那么当结合引力与量子力学时,为什么霍金认为信息守恒被破坏了呢?我们将论点归结为一句警句:
1700931415
1700931416 落入黑洞的信息是丢失的信息。
1700931417
1700931418 换个说法来讲,定律永远是不可逆的,因为任何事物都无法从黑洞视界内重新返回。
1700931419
1700931420 如果霍金是正确的,那么自然定律将会增加某种随机性,物理学的整个基础崩溃了。我们以后再回到这个问题。
1700931421
1700931422 不确定原理
1700931423
1700931424 拉普拉斯认为,只要他对现在了解得足够多,他就可以预测未来。不幸的是,对于世界上所有的算命者来说,同时知道一个物体的位置和速度是不可能的。我所说的不可能,并不是非常困难或者是现今的技术无法胜任此任务。遵循物理定律的任何技术永远都无法胜任此事,不可能性的程度并不亚于提高技术来进行超光速旅行。为了同时测定粒子的位置和速度而设计的任何实验都会出现违背海森伯不确定原理的困难。
1700931425
1700931426 不确定原理是重要的分水岭,它将物理学分为量子之前的经典时代和奇异的后现代量子时代。经典物理包括量子力学之前的一切,包括牛顿的运动理论、麦克斯韦的光理论以及爱因斯坦的相对论理论。经典物理是决定论性的,量子物理则充满了不确定性。
1700931427
1700931428 不确定原理是一个奇怪的、大胆创新的断言,是在埃尔温·薛定谔(Erwin Schrodinger)发现量子力学的数学基础之后不久,由26岁的沃纳·海森伯于1927年作出的。甚至在那个创新思想如雨后春笋般的时代,它依然以它的异常性而突出。海森伯没有提出精确测量物体位置的极限。我们可以无限精度地测量粒子在空间的坐标。他同样也没有提出精确测量物体速度的极限。他所主张的是,任何实验,无论其多么复杂精巧,都永远无法同时测量物体的位置和速度。仿佛爱因斯坦的上帝,规定了我们永远无法知道得足够多,并以此来预测未来。
1700931429
1700931430
1700931431 黑洞战争 不确定原理充满了模糊性,但它自身恰恰相反,没有任何模糊性。不确定性是一个精确的概念,它涉及概率测定、微积分和其他新奇的数学。但是,为了解释一个有名的表述,一幅图相当于1000个方程。我们先从概率分布开始。假如有非常多的粒子,比方说1万亿个粒子,我们研究它们在水平轴,也就是x轴上的位置。我们发现第一个粒子在x=1.325 7处,第二个粒子在x=0.913 4处,如此等等。关于所有粒子的位置,我们可以列出一个长的清单。不幸的是,需要像本书这样的书大约1000万册才行,在大多数情形下,我们并不对这个清单特别感兴趣。画一个统计图来表明x位置处粒子的多少将更有启发作用。该图的形状如下:
1700931432
1700931433
1700931434
[ 上一页 ]  [ :1.700931385e+09 ]  [ 下一页 ]