打字猴:1.700982741e+09
1700982741
1700982742
1700982743 其中Is,Izz与前面给出的量完全相同.陀螺总角动量L=L′+L′Ω的竖直分量(即沿z轴分量)守恒,水平分量为
1700982744
1700982745
1700982746
1700982747
1700982748 水平分量是一个以进动角速度Ω绕z轴旋转的矢量.据角动量定理,重力相对O点的力矩等于L或者说Ly的变化率,即有
1700982749
1700982750
1700982751
1700982752
1700982753
1700982754
1700982755
1700982756
1700982757
1700982758 这就是无章动时,稳定状态下进动角速度Ω满足的代数方程.
1700982759
1700982760 如果开始时刚体进动角速度Ω较小,如图5-59所示,dt时间内Ly由Ωdt引起的变化量dLy小于dt时间内重力矩提供的Mdt.这一方面会使陀螺整体绕x轴顺时针向下转动,形成沿x轴负方向逐渐增大的角动量L(-x);另一方面又会使图5-59中的原dLy“增长”,即进动角速度Ω增大.Ω增大到一定程度后,dLy将大于Mdt.这一方面会遏制陀螺的向下转动,以至反向朝上转动,L(-x)转化成沿x轴正方向的Lx;另一方面也会使dLy“缩短”,即进动角速度Ω也减小.这样的过程往返进行,陀螺时而朝下,时而朝上摆动,形成图5-60中的章动(nutation),在拉丁语中是“点头”的意思.
1700982761
1700982762
1700982763
1700982764
1700982765 图 5-59
1700982766
1700982767
1700982768
1700982769
1700982770 图 5-60
1700982771
1700982772 教学中常用陀螺仪来演示刚体定点转动.图5-61所示为一杠杆陀螺仪,杆AB可绕光滑支点O在水平面内自由转动,也可上下倾斜.陀螺仪主体圆盘G和平衡重物W置于杆的两边,调节W的位置,可使杆处于水平或倾斜状态.先将杆调至水平位置,让G绕环稳定地快速自转,缓慢移动W,相对支点O产生非零的重力矩,随即出现绕竖直轴的进动,这一现象常称为回转效应.稳定后,若在进动的前方用手指挡一下圆盘G,降低进动角速度,便会出现先下后上的章动.
1700982773
1700982774
1700982775
1700982776
1700982777 图 5-61
1700982778
1700982779 例25 质量m、半径R的匀质薄圆板,可绕长度也是R的水平轻杆的一端,直立在水平地面上纯滚动.设轻杆绕着过其另一端的竖直固定轴,以恒定的角速度Ω旋转.试求圆板的瞬时角速度ω、角动量L以及地面对板的作用力N.
1700982780
1700982781 解 参考图5-62,圆板绕O点作定点转动,进动角速度Ω竖直向上,在图示位置,自转角速度ωs水平朝左,且很易导得ωs=Ω.叠加后,得
1700982782
1700982783
1700982784
1700982785
1700982786
1700982787
1700982788
1700982789 图 5-62
1700982790
[ 上一页 ]  [ :1.700982741e+09 ]  [ 下一页 ]