1700986882
1700986883
1700986884
1700986885
1700986886
任意t时刻,未必有PF+P∫=0.ω=ω0时,则有
1700986887
1700986888
1700986889
1700986890
1700986891
可见每一时刻PF与P∫相互抵消.
1700986892
1700986893
其实在ω=ω0时,振子稳定振动状态与f=0,F=0时的本征振动状态相同,每一时刻振动动能与势能之和为一常量,这与稳定振动中PF与P∫时时相消一致.
1700986894
1700986895
例22 将(7.65)式中驱动力F=F0cosωt改取为任意T周期力函数F(t),试求受迫振动通解.
1700986896
1700986897
解 参考(7.66)式,受迫振动微分方程可改述成
1700986898
1700986899
1700986900
1700986901
1700986902
通解x(t)仍可分解成齐次方程
1700986903
1700986904
1700986905
1700986906
1700986907
的阻尼通解x0(t)与非齐次方程①式的特解x*(t)之和,即有
1700986908
1700986909
1700986910
1700986911
1700986912
引入驱动力基频
1700986913
1700986914
1700986915
1700986916
1700986917
据傅里叶级数理论,可有下述分解:
1700986918
1700986919
1700986920
1700986921
1700986922
1700986923
1700986924
其中f0n,0n是在分解中获得的常量.设是
1700986925
1700986926
1700986927
1700986928
1700986929
的特解,那么据①式的线性特征,可知
1700986930
1700986931
[
上一页 ]
[ :1.700986882e+09 ]
[
下一页 ]