打字猴:1.701023121e+09
1701023121 随着我们离圆越来越近,视野变得越来越小,到最后我们看到的弧线与直线已经非常接近,几乎没有区别了。如果一只蚂蚁在圆上爬行,它只能看到身边很小的范围,它会以为自己是在一条直线上爬行。在地球表面上生活的人也一样,认为自己位于一个平面之上(除非他非常聪明,知道观察由远而近、逐渐从地平线上露出来的物体)。
1701023122
1701023123 微积分与牛顿
1701023124
1701023125 接下来,我要教大家关于微积分的知识。准备好了吗?首先,我们要感谢艾萨克·牛顿。他告诉我们,圆的研究并没有特别大的难度。所有的平滑曲线,只要我们无限接近地观察,都跟直线非常相似。只要没有尖角,无论这条曲线如何弯曲盘旋,都无伤大雅。
1701023126
1701023127 发射导弹时,导弹会以下图所示的轨迹运动:
1701023128
1701023129
1701023130
1701023131
1701023132 导弹的运动轨迹是一条抛物线,先上升,然后下降。在万有引力的作用下,所有的运动轨迹都会呈曲线形并接近地面,这是物理学的一个基本事实。但是,如果我们取非常短的一段并靠近观察,这条曲线就会变成下图所示的形状:
1701023133
1701023134
1701023135
1701023136
1701023137 再靠近一些,就会变成这样:
1701023138
1701023139
1701023140
1701023141
1701023142 上图中的导弹运动轨迹在肉眼看来就像一条直线,以一定的倾斜角度向上运动。越靠近观察,曲线就越接近直线。
1701023143
1701023144 接下来是观念上的一个飞跃。牛顿说,好吧,让我们继续——把视野缩小到无限小,小到无法计量的程度,但不是零。这时候,我们研究的就不是一段很短的时间内导弹的运动轨迹了,而是某一个时点的情况。本来接近于直线的运动轨迹直接变成直线了,牛顿把这条直线的倾斜度叫作流数(fluxion),我们现在称之为导数(derivative)。
1701023145
1701023146 阿基米德不愿意完成这种飞跃。他知道,多边形的边越短,就越接近于圆,但是,他绝对不会认为圆其实就是一个有无穷多条边而边长极短的多边形。
1701023147
1701023148 与牛顿同时代的人中,也有人不愿意凑这个热闹,反对者中名气最大的是乔治·贝克莱(George Berkeley)。贝克莱用充满嘲讽的语气贬低牛顿提出的无限小这个概念:“这些流数是什么呢?其实就是迅速消逝的增量的速度。那么这些迅速消逝的增量又是什么呢?它们既不是有限量,也不是无限小的量,什么都不是。难道我们不能称它们是‘逝去量的鬼魂’吗?”遗憾的是,这一段逸事在现代数学文献中却没有记载。
1701023149
1701023150 然而,微积分的确有效。如果围绕头部摆动一块石头,在突然放手后,石头就会以一个恒定的速度飞出去,运动轨迹呈直线形[5],方向则正好是根据微积分基本公式计算的放手时石头的运动方向。这是牛顿的另一个惊人发现:运动物体会做直线运动,除非该物体受到其他力的作用,才会偏离原来的方向。这也是我们习惯于线性思维的原因之一:我们对时间与运动的理解,是在生活中观察到的各种现象的基础上形成的。甚至在牛顿提出他的那些定律之前,我们就已经知道物体会沿直线运动,除非有外力改变这种状况。
1701023151
1701023152 永远无法到达的冰激凌商店
1701023153
1701023154 对牛顿的批评是有道理的。从现代数学的严密性来看,他提出的微积分公式谈不上完美。问题就出在无限小这个概念上,这是几千年来数学家们面对的一个令人多少有些尴尬的问题。公元前5世纪,希腊爱利亚学派有一位名叫芝诺(Zeno)的哲学家,尤为擅长就物理世界提出一些看似无知的问题,但是这些问题总会酿成哲学上的大混乱。这一次,又是他率先发难。
1701023155
1701023156 芝诺提出的一个悖论非常有名,大意就像我下面举的这个例子。我决定步行去商店买冰激凌,当然,在我走完一半的路程之前,我不可能到达商店。在我走完一半路程之后,如果我不接着走完剩下路程的一半,我还是无法到达商店。每次我都要先走完剩下路程的一半,才有可能到达商店,如此循环下去。我可能与冰激凌商店越来越接近,但是,无论我走完多少个半程,我永远也无法到达冰激凌商店。我与我的巧克力冰激凌之间总会有一段极小但不等于零的距离,因此,芝诺断言步行去商店买冰激凌是无法实现的。芝诺的这个悖论适用于所有的目的地:步行穿过大街,迈出一步,等等。也就是说,所有的运动都是不可能实现的。
1701023157
1701023158 据说犬儒学派的第欧根尼(Diogenes the Cynic)驳斥了芝诺悖论,他站起来走到了房间的对面。这个举动完美地证明芝诺眼中那些不可能完成的运动事实上是能够完成的,那么,芝诺的证明肯定出了问题。但是,问题出在哪儿呢?
1701023159
1701023160 我们可以利用数字把商店之行分成若干部分。我们得先走一半路程,然后走剩下路程的一半,也就是全程的1/4,此时,还剩下全程的1/4。再之后剩下的是1/8、1/16、1/32……。所以,走向商店的过程就是:
1701023161
1701023162 1/2+1/4 +1/8 +1/16+1/32 +……
1701023163
1701023164 把这个数列的前10项相加,得数约等于0.999。加总前20项,得数就与0.999 999更为接近。换言之,我们与商店的距离非常非常近。但是,无论我们加多少项,都无法得到1。
1701023165
1701023166 芝诺悖论与另一个难题非常相似:循环小数0.999 99……是否等于1?
1701023167
1701023168 我见过有人因为这个问题都快要挥拳相向了,在《魔兽世界》粉丝主页、艾茵·兰德论坛等网站,人们也就这个问题争论不休。关于芝诺悖论,我们的自然反应是“我们当然能买到冰激凌”。但是,在我们讨论的这个问题上,直觉却给出了不同的答案。如果我们一定要问出答案,大多数人会说“0.999 9……不等于1”。毫无疑问,这个循环小数看上去不等于1,要小一点儿,但两者的差不是很大。就像例子中那位买不到冰激凌的家伙一样,这个循环小数与1越来越接近,但可能永远也无法等于1。
1701023169
1701023170 不过,无论哪里的数学老师,包括我本人,都会告诉他们:“你错了,这个循环小数就是等于1。”
[ 上一页 ]  [ :1.701023121e+09 ]  [ 下一页 ]