1701023221
1701023222
我们很有可能认为这个得数是
1701023223
1701023224
(1–1)+(1–1)+(1–1)+……=0+0+0+……
1701023225
1701023226
我们还有可能认为,即使有无数个0相加,结果也会等于0。但是,由于负负得正,因此1–1+1等于1–(1–1)。不断地进行这个转换,上面的算式就可以写成
1701023227
1701023228
1–(1–1)–(1–1)–(1–1)……=1–0–0–0……
1701023229
1701023230
这样计算的结果就等于1,道理跟上面的计算一样。那么,结果到底是0还是1呢?还是一半情况下等于0,另一半情况下等于1呢?结果到底等于多少取决于最后一个加数,但是无穷求和算式没有最后一个加数。
1701023231
1701023232
现在的情况比以前更糟糕了,别急着做出判断。假设T是这个神秘的求和算式的得数:
1701023233
1701023234
T=1–1+1–1+1–1+……
1701023235
1701023236
把等式两边都变成各自的相反数,于是我们得到
1701023237
1701023238
–T=–1+1–1+1……
1701023239
1701023240
但是,如果将设为T的部分中的第一个加数1去掉,也就是说T–1,就正好是上述算式的右边部分,即
1701023241
1701023242
–T= –1+1–1+1……=T–1
1701023243
1701023244
于是–T=T–1,如果等式成立,T就等于1/2。无穷多个整数相加,得数竟然神奇地变成了分数,这可能吗?如果觉得不可能,那么我们自然有理由怀疑这样一个看似毫无破绽的证明过程出了问题。但是,请注意,真的有人觉得这个结果是有可能的,比如意大利的数学家、神父圭多·格兰迪(Guido Grandi),格兰迪级数1–1+1–1+1–1 +……就是以他的名字命名的。1703年,格兰迪在一篇论文中证明该级数的和是1/2,而且指出这个神奇的结果表明宇宙是从虚无中产生的。(不用担心,我和大家一样,不会相信他的结论。)当时的杰出数学家,包括莱布尼茨与欧拉,虽然没有接受格兰迪的结论,却认可了他奇怪的计算方法。
1701023245
1701023246
实际上,要解出0.999……这个谜(以及芝诺悖论、格兰迪级数),还需要进行更深入的研究。大家也无须屈从于我的代数知识,违心地接受我的观点。比如说,大家可以坚持认为0.999……不等于1,而是等于1减去一个无限小的数。在这个问题上,大家还可以更进一步,坚持认为0.333……不等于1/3,而是比1/3小,两者的差也是一个无限小的量。完善这样的观点需要一些毅力,但并不是一件不可能的事。我在教授微积分时,有一个名叫布莱恩的学生,因为不满课堂上教的各种定义,自己提出了一大堆理论,并且把他提出的无限小量命名为“布莱恩数”。
1701023247
1701023248
事实上,这样的情况并不是第一次发生。数学中有一个叫作“非标准分析”(nonstandard analysis)的领域,就在专门深入研究这类数字。20世纪中叶,亚伯拉罕·罗宾逊(Abraham Robinson)开拓的这个研究领域,终于为贝克莱觉得荒谬的“迅速消逝的增量”下了明确的定义。我们必须付出的代价(从另一个视角看,未尝不是一种收获)是接受各种各样的新数字,不仅包括无穷小的数字,还包括无穷大的数字,它们奇形怪状、大小不一。[6]
1701023249
1701023250
布莱恩的运气不错。我在普林斯顿大学的同事爱德华·尼尔森(Edward Nelson)是非标准分析方面的专家。为了让布莱恩进一步了解非标准分析,我安排他们俩见了一面。后来,爱德华告诉我,那次见面并不顺利。在爱德华告诉布莱恩那些无限小量不可以叫作“布莱恩数”之后,布莱恩立刻丧失了兴趣。
1701023251
1701023252
(这给我们上了一堂思想品德课:如果人们学习数学只是为了名声与荣誉,那么他们在数学研究的道路上是走不远的。)
1701023253
1701023254
到目前为止,我们上文讨论的那个争议性问题还没取得任何进展呢。0.999……到底是多少?等于1,还是比1小?两者的差是一个无穷小的数,而这个无穷小的数在100年前还不为人所知?
1701023255
1701023256
正确的做法是谢绝回答这个问题。0.999……到底是多少?这个数字似乎就是下列数字的和:
1701023257
1701023258
0.9+0.09+0.009+0.000 9+……
1701023259
1701023260
但是,这个和到底是什么呢?后面的那个令人讨厌的省略号是个大麻烦。两个数、三个数甚至100个数相加,结果都不可能引起任何争议,这是用数学的方式表示一个我们非常了解的物理过程:取100堆材料,捣碎后混合到一起,看最后得到多少。但是,如果这些材料有无穷多堆,情况就迥然不同了。在现实世界,我们不可能会有无穷多堆材料。无穷级数的和是多少呢?根本没有,除非我们为它赋予一个值。19世纪20年代,奥古斯汀–路易·柯西(Augustin-Louis Cauchy)完成了一个伟大的创新,将极限的定义引入了微积分。[7]
1701023261
1701023262
1949年,英国数论学家哈代(Hardy)在他的专著《发散级数》(Divergent Series)中,把这个问题解释得非常清楚:
1701023263
1701023264
现代数学家从未想到,一堆数学符号竟然需要通过定义为其赋值,才会具有某种“含义”,因此,即使对于18世纪最杰出的数学家而言,这个发现也不能等闲视之。他们非常不习惯这样的定义,每次都要指出“在这里,X的意思是指Y”,这让他们觉得十分别扭。柯西之前的数学家几乎不会提出“我们应该怎么定义1–1+1–1 +……”这样的问题,而会问“1–1+1–1 +……是多少”。这样的思维习惯让他们陷入了毫无意义的困惑与争议(常常会演变成辱骂)中。
1701023265
1701023266
我们不可以把这个问题看作数学领域的相对主义而掉以轻心。我们可以为一组数学符号赋予任何含义,但这并不意味着我们就应该这么做。与现实生活一样,我们关于数学问题的选择,有的是明智的,有的则非常愚蠢。在数学领域,明智的选择可以消除毫无意义的困惑,同时不会引发新问题。
1701023267
1701023268
在计算0.9+0.09+0.009 +……时,加项越多,和就越接近于1,但永远不会等于1。无论我们在离1多近的位置上设置警戒线,在经过有限次数的加法运算之后,和最终都会越过这条警戒线,而且永远不会停下前进的步伐。柯西指出,在这样的情况下,我们应该直接将这个无穷级数的值定义为1。随后,他绞尽脑汁,希望证明在他的这个定义被接受之后,不会在其他方面造成相互矛盾的糟糕局面。在这个过程中,柯西构建了一个框架体系,完美地提升了牛顿微积分学的严谨程度。当我们指出某条曲线的局部接近于直线时,大致的意思是说:我们越靠近观察,这条曲线就越接近于直线。在柯西的框架中,我们无须提及任何无穷小的数字或者其他概念,以免心存疑虑的人因此担心害怕。
1701023269
1701023270
当然,这样的做法是要付出代价的。0.999……这个谜之所以应该被破解,是因为它会导致我们的直觉陷入自相矛盾的状态之中。我们希望可以像上文那样,方便地对无穷级数的和进行各种代数运算,因此,我们需要它等于1。但另一方面,我们又希望每个数只能用一个独一无二的十进制数字来表示,因此,我们不应该随心所欲,一会儿说这个数是1,一会儿又说它是0.999……。我们不可能同时满足这两个要求,而只能放弃其中一个。柯西提出的这个方法经过两百年时间的验证,其价值得到了充分的证明,不过,这个方法放弃了十进制展开的唯一性。在英语中,我们有时会用两个不同的字母串(单词)表示现实世界中的同一个事物,但我们并没有因此陷入任何麻烦。同样,使用两个不同的数字串表示同一个数,也不是不可以接受的。
[
上一页 ]
[ :1.701023221e+09 ]
[
下一页 ]