打字猴:1.70104873e+09
1701048730
1701048731
1701048732
当G2是交换群时,于是上面的图表变为下边的图表,并且
1701048733
1701048734
1701048735
1701048736
1701048737
1701048738
1701048739
1701048740
1701048741
1701048742
1701048743
现在假设f∶G1→G2是满同态.记G0=Kerf,是投射.设是投射,则jj1(G0)=0,从而诱导出同态使得lf=jj1.或者说有下面的交换图表.在这些规定下,有以下命题.
1701048744
1701048745
1701048746
1701048747
1701048748
1701048749
1701048750
命题A.11 从而
1701048751
1701048752
1701048753
1701048754
1701048755
证明 因为是交换群,所以只须再证
1701048756
1701048757
1701048758
1701048759
1701048760
1701048761
∀g2∈Kerl,取g1∈f-1(g2).于是jj1(g1)=lf(g1)=l(g2)=0,从而j1(g1)∈j1(G0),即存在g0∈G0,使得j1(g0)=j1(g1).于是则 ▎
1701048762
1701048763
1701048764
1701048765
1701048766
推论 若f∶G1→G2是满同态,Kerf=G0.设是f诱导的同态(命题A.10),则其中是投射.
1701048767
1701048768
1701048769
1701048770
1701048771
1701048772
1701048773
1701048774
1701048775
1701048776
1701048777
1701048778
1701048779
[
上一页
] [ :1.70104873e+09 ] [
下一页
]