打字猴:1.701048747e+09
1701048747
1701048748
1701048749
1701048750 命题A.11 从而
1701048751
1701048752
1701048753
1701048754
1701048755 证明 因为是交换群,所以只须再证
1701048756
1701048757
1701048758
1701048759
1701048760
1701048761 ∀g2∈Kerl,取g1∈f-1(g2).于是jj1(g1)=lf(g1)=l(g2)=0,从而j1(g1)∈j1(G0),即存在g0∈G0,使得j1(g0)=j1(g1).于是则 ▎
1701048762
1701048763
1701048764
1701048765
1701048766 推论 若f∶G1→G2是满同态,Kerf=G0.设是f诱导的同态(命题A.10),则其中是投射.
1701048767
1701048768
1701048769
1701048770
1701048771
1701048772
1701048773
1701048774
1701048775
1701048776
1701048777
1701048778
1701048779
1701048780 证明 根据命题A.11,有同构使得hl=j2,见左面图表.于是(hj)j1=j2f即就是f诱导的同态从而 ▎
1701048781
1701048782
1701048783 命题A.12
1701048784
1701048785
1701048786
1701048787
1701048788
1701048789
1701048790
1701048791
1701048792 证明记iλ∶Gλ→G1*G2是包含映射,λ=1,2;记φ1∶G1*G2→G1,是满足φ1i1=id,φ1i2平凡的同态.则有和使得(习题10).根据习题4(或习题11),只用再证明
1701048793
1701048794
1701048795
1701048796
[ 上一页 ]  [ :1.701048747e+09 ]  [ 下一页 ]