打字猴:1.701049463e+09
1701049463
1701049464 Q是(R,τ)的可数稠密子集,从而(R,τ)是可分的.
1701049465
1701049466 (4)设A⊂S.因为R(SA)是(R,τ)的开集,所以就有(R(SA))∩S=A是(S,τs)的开集.这说明S的每个子集都是(S,τs)的开集,从而(S,τs)是离散拓扑空间.
1701049467
1701049468 (5)用反证法.如果(R,τ)满足C2公理,则(S,τs)也满足C2公理,从而应是可分的,与(4)矛盾.
1701049469
1701049470 §2
1701049471
1701049472
1701049473 1.只证明
1701049474
1701049475
1701049476
1701049477
1701049478 根据定义,f(x)=inf{r∈QI|x∈Ur},而从而
1701049479
1701049480
1701049481
1701049482 若r∈QI满足则QI中任一大于r的数s,都有x∈Us,因此f(x)≤s.由QI在[0,1]上稠密,得出f(x)≤r.于是又有不等式
1701049483
1701049484 2.把En看作E1×E1×…×E1,记
1701049485
1701049486 f(x)=(f1(x),f2(x),…,fn(x)).
1701049487
1701049488
1701049489
1701049490 将每个fi扩张到X上得到规定为
1701049491
1701049492
1701049493
1701049494
1701049495
1701049496 则是f的扩张.
1701049497
1701049498
1701049499
1701049500
1701049501
1701049502
1701049503
1701049504 3.设r∶En→D是收缩映射,有ri=id∶D→D,从而f=rif∶A→D.映射if∶A→En可扩张为(上题结果),则是f的扩张.
1701049505
1701049506
1701049507
1701049508 4.设f∶A→Sn是一连续映射,记i∶Sn→En+1是包含映射,规定r∶En+1{O}→Sn为将if∶A→En+1扩张为g∶X→En+1.记U=g-1(En+1{O}),则U是A的开邻域,并且
1701049509
1701049510
1701049511 r(g|U)∶U→Sn
1701049512
[ 上一页 ]  [ :1.701049463e+09 ]  [ 下一页 ]