1701107280
似乎从所有这一切就能断言,概率演算是一门无用的科学,而且我们必须怀疑这种模糊的本能,可是我们刚才还称其为健全的感觉,并习惯于求助它来证明我们的约定是合理的呢。
1701107281
1701107282
但是,我们也不能赞成这个结论;没有这种模糊的本能,我们便无从做起。没有它科学则是不可能的,没有它我们既不能发现定律又不能应用定律。例如,我们有权利阐述牛顿定律吗?毋庸置疑,许多观察都与它相符;但这不是偶然性的简单结果吗?此外,这个定律几个世纪以来都为真,我们怎么知道它明年是否还将为真呢?对于这个异议,你会感到无从回答,除非说:“那是极其不可能的。”
1701107283
1701107284
但是,姑且承认这个定律吧。依靠它,我自信我自己能够计算从现在起一年后土星的位置。我有权利相信这一点吗?谁能够告诉我,在从现在到那时这段时间内,一个以极大速度运动的巨大质量不会通过太阳系附近,从而产生未预见到的扰乱呢?在这里,只能再一次回答:“那是极其不可能的。”
1701107285
1701107286
从这种观点来看,全部科学只可能是概率演算的无意识的应用而已。谴责这种演算就是谴责整个科学。
1701107287
1701107288
在有些科学问题上,插入概率演算是比较明显的,我将稍微详述一下。在这些问题的最前沿有内插法问题,在内插法中,已知一定数目的函数值,我们企图猜测中间值。
1701107289
1701107290
我同样要提到著名的观察误差理论,我以后还要提及它;气体运动论这个众所周知的假设假定,每一个气体分子都描绘出极复杂的轨道;但是,由于大数的效果,唯一可观察的平均现象服从马略特和盖-吕萨克(Gay-Lussac)的简单定律。
1701107291
1701107292
所有这些理论都建立在大数定律的基础上,概率演算显然会毁坏它们。的确,它们只有特殊的利益,除了涉及内插法外,这些都是我们心甘情愿付出的牺牲。
1701107293
1701107294
但是,正如我上面说过的,可以受到怀疑的也许不仅仅是这些部分的牺牲;整个科学的合法性恐怕将受到挑战。
1701107295
1701107296
我确实知道有人可能会说:“我们是无知的,可是我们必须行动。为了行动,我们无暇全力以赴地进行充分的调查,以消除我们的无知。况且,这样的调查也需要无数的时间。因此,我们必须在未知之前作决定;不论成功与否,我们不得不这样做,我们必须在不完全相信这些法则的情况下遵循它们。我知道的并不是某一事物是真实的,不过在我看来,最好的方针就是权当它是真实的而行动。”从那时起,概率演算从而科学本身都只有实际的价值了。
1701107297
1701107298
不幸的是,困难并没有因此而消失。赌徒想一举获胜;他询问我的意见。如果我向他提出建议,那么我要运用概率演算,但是我不能保证成功。这就是我所谓的主观概率。在这个个案中,我必须满足于我刚才给出梗概的说明。但是,假定一观察者在赌博现场,他记下各盘的输赢,赌博继续了很长时间。当他汇总他的记录时,他将发现,事件的发生与概率演算的规律一致。这就是我所谓的客观概率,正是这个现象必须加以说明。
1701107299
1701107300
有许多保险公司应用概率演算法则,它们把红利分给它们的股东,这些红利的客观实在性是无可辩驳的。乞灵于我们的无知和行动的必要性不足以说明它们。
1701107301
1701107302
因此,绝对的怀疑论是不可接受的。我们可以怀疑,但是我们不能整个儿宣布不适用。有必要进行讨论。
1701107303
1701107304
Ⅰ.概率问题的分类。为了把所呈现的关于概率的问题恰当地加以分类,我们可以从许多不同的观点考察它们,首先从普遍性的观点考察它们。我在上面已经说过,概率是有利个例数与可能个例数之比。由于没有较好的名词,我所谓的普遍性将随着可能个例数增加。这个数可以是有限的,例如我们掷一局骰子,其中可能个例数是36。这是一次普遍性。
1701107305
1701107306
但是,例如我们要问,圆内的点在内接正方形内的概率是多少,那么圆内有多少点便有多少可能个例,也就是说有无限多可能个例。这是二次普遍性。普遍性还能够向前推进。我们可以问函数将满足给定条件的概率。于是,人们能设想出多少不同的函数,就有多少可能个例。这是三次普遍性,例如当我们企图寻找与有限的观察数相符合的最概然的定律时,我们就上升到三次普遍性了。
1701107307
1701107308
我们可以使自己站在完全不同的观点上。如果我们不是无知的,那就不会有概率,无非为确定性留下了位置。但是,我们的无知不能是绝对的,因为那样根本就不会再有任何概率,由于甚至要达到不确定的科学,还需要一点光明才行。因此,概率问题可以按照这种无知的或深或浅来进行分类。
1701107309
1701107310
在数学中,我们甚至可以提出概率问题。从对数表中随意取出的对数的第五位小数是9,其概率若何?可以毫不犹豫地回答,这个概率是1/10;在这里,我们具有该问题的所有数据。我们不用求助对数表就能够计算我们的对数,但我们不想去自找麻烦。这是第一级无知。
1701107311
1701107312
在物理科学中,我们的无知变得更大。一个系统在给定时刻的状态取决于两件事:它的初始状态和状态变化所依据的定律。如果我们知道这个定律和这个初始状态,那么我们将有一个待解决的数学问题,我们又落回到第一级无知上。
1701107313
1701107314
但是,常常会发生这种情况:我们知道定律,却不知道初始状态。例如,可以问小行星目前的分布如何?我们知道,自古以来,它们服从开普勒定律,但是我们不知道它们的初始分布是什么。
1701107315
1701107316
在气体运动论中,我们假定气体分子沿直线轨道运动,并服从弹性体碰撞定律。但是,因为我们不知道它们的初始速度,所以我们也不知道它们现在的速度。
1701107317
1701107318
概率演算只能使我们预言由这些速度组合将要引起的平均现象。这是第二级无知。
1701107319
1701107320
最后,不仅初始条件,而且定律本身都可能是未知的。这样,我们便达到第三级无知,至于现象的概率,一般说来,我们根本不再能肯定任何东西。
1701107321
1701107322
人们往往不是借助或多或少的关于定律的不完善的知识试图猜测事件的,事件可能是已知的,我们想去寻找定律;或者,我们不是由原因推导结果,而是希望从结果推导原因。这些是所谓的原因概率问题,从它们的科学应用的观点来看是最有趣的。
1701107323
1701107324
我和一位先生玩纸牌游戏,我知道他是很诚实的。他正准备发纸牌。他翻出王牌的概率是多少?是1/8。这是结果概率的问题。
1701107325
1701107326
我和一位不相识的先生玩牌。他发了十次牌,而翻出六次王牌。他是骗子的概率是多少?这是原因概率中的问题。
1701107327
1701107328
有人可能会说,这是实验方法的基本问题。我观察到x的n个值和相应的y值。我发现,后者与前者之比实际上是常数。这里有一个事件,其原因何在呢?
1701107329
[
上一页 ]
[ :1.70110728e+09 ]
[
下一页 ]